
1819

Introduction
Animals within their sensory environments face the challenge of
transducing and interpreting relevant sensory information in order
to enact the appropriate behavioral responses to the stimuli.
Neuroscientists who wish to understand how sensory systems
accomplish these tasks are faced with three major challenges: (1)
to understand the relationships between spatio-temporal activity
patterns in sensory neural ensembles and the information they
convey, (2) to understand how the spatio-temporal patterns are
decoded by cells at the next processing stage, and (3) to understand
how computations (e.g. pattern recognition) are carried out on that
decoded information. These challenges are difficult or impossible
to separate from one another in many cases, since the functions of
representation, decoding and computation are often concatenated.
For example, in the human visual system, the transformation in the
spatial representation of visual space between the retina and the
primary visual cortex is thought to enable a computation carried
out by postsynaptic cells: the complex log transformation of visual
images (Schwartz, 1994). Over the last several decades, researchers
in several institutions around the world have been studying these
problems with considerable success in a much simpler mapped
sensory system: the cercal sensory system of the cricket. The cercal
system is implemented around a representation of stimulus direction
and dynamics, and demonstrates the essential features of neural maps
found in more complex systems, including mammalian visual and
auditory systems. This review will discuss progress toward
understanding the structure and operation of the cercal system within
the context of the neural computations it mediates, and summarize

insights into the mechanisms through which information-processing
algorithms are implemented within this system. These insights may
well be generalized to more complex systems.

Overview of the cercal sensory system
Every orthopteran insect has a cercal sensory system, which
mediates the detection, localization and identification of air currents.
The receptor organs for this modality are two antenna-like
appendages called cerci at the rear of the abdomen, covered with
mechanosensory hairs. Air currents in the animal’s immediate
environment move these hairs and, thereby, activate the receptor
neurons at the base of the hairs. Fig.1 shows the basic structure of
the cercal sensory system in Acheta domestica: the cerci,
mechanosensory afferent neurons and the projection interneurons.

The cercal system was shown in early studies to be of critical
importance for the oriented escape response (Boyan et al., 1986;
Camhi, 1980) and jumping (Hoyle, 1958). However, it is a
considerable oversimplification to classify this system as an ‘escape
system’, just as it would be an oversimplification to categorize our
own visual system with that label. Rather, the cercal system can be
thought of as functioning as a low-frequency, near-field extension
of the animal’s auditory system. The emerging picture of the cercal
system and its associated behaviors is fairly complex. Air particle
displacement directed at the cerci can elicit at least 14 distinct
responses, including evasion, flight, offensive reactions, scanning,
freezing, and various reactions during male stridulation, and the
response can depend on the behavioral state of the animal as well
as the context of the environment (Baba and Shimozawa, 1997). In
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Summary
Crickets and many other orthopteran insects face the challenge of gathering sensory information from the environment from a set
of multi-modal sensory organs and transforming these stimuli into patterns of neural activity that can encode behaviorally
relevant stimuli. The cercal mechanosensory system transduces low frequency air movements near the animal’s body and is
involved in many behaviors including escape from predators, orientation with respect to gravity, flight steering, aggression and
mating behaviors. Three populations of neurons are sensitive to both the direction and dynamics of air currents: an array of
mechanoreceptor-coupled sensory neurons, identified local interneurons and identified projection interneurons. The sensory
neurons form a functional map of air current direction within the central nervous system that represents the direction of air
currents as three-dimensional spatio-temporal activity patterns. These dynamic activity patterns provide excitatory input to
interneurons whose sensitivity and spiking output depend on the location of the neuronal arbors within the sensory map and the
biophysical and electronic properties of the cell structure. Sets of bilaterally symmetric interneurons can encode the direction of
an air current stimulus by their ensemble activity patterns, functioning much like a Cartesian coordinate system. These
interneurons are capable of responding to specific dynamic stimuli with precise temporal patterns of action potentials that may
encode these stimuli using temporal encoding schemes. Thus, a relatively simple mechanosensory system employs a variety of
complex computational mechanisms to provide the animal with relevant information about its environment.
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addition to sensitivity to air particle displacement stimuli mediated
by the filiform receptors we study, the cercal system is also
responsible for mediating behavior related to orientation relative to
gravity as well as a variety of touch and chemotactic sensations via
other types of sensor on the cerci (Sakaguchi and Murphey, 1983;
Murphey, 1985; Heusslein and Gnatzy, 1987). Our discussion will
be limited to the filiform receptors sensitive to air particle
displacement.

Filiform mechanoreceptor array
In the common house cricket Acheta domestica, which is the species
we study, each cercus is approximately 1cm long in a normal adult
cricket, and is covered with approximately 750 filiform
mechanosensory hairs. These hairs range in length from less than
50 µm to almost 1.5mm (Landolfa and Miller, 1995). Each hair is
supported at its base by a viscoelastic socket that enables the hair
to pivot within its socket, rather than bending along its shaft (Thurm,
1964; Thurm, 1965a; Thurm, 1965b; Thurm, 1983; Thurm and
Kuppers, 1980). Each hair’s directional movement axis is determined
by the orientation of a hinge-like structure in the socket. The 750
hairs on each cercus are arrayed with their movement axes in diverse
orientations within the horizontal plane, insuring that air currents
of sufficient velocity will deflect all of the filiform hairs to some
extent: each hair will be deflected from its rest position by an amount
that is proportional to the cosine of the angle between the air current
direction and the hair’s movement axis.

Unlike the mammalian cochlea, where efferent neural feedback
can fine-tune the responsiveness of the auditory transducers,
mechanical filtering of air current stimulus amplitude and frequency
in the cercal system is determined solely by the biomechanical
configuration of the hairs (Kanou and Shimozawa, 1984; Kumagai
et al., 1998; Osborne, 1997; Shimozawa and Kanou, 1984a;
Shimozawa and Kanou, 1984b; Shimozawa et al., 1998; Cummins
et al., 2007; Cummins and Gedeon, 2007; Gedeon et al., 2007; Heys

et al., 2008). Specifically, the primary determinants of each hair’s
frequency filtering properties are its length, mass and the viscoelastic
properties of its socket: these properties determine the hair’s
moment of inertia, spring stiffness, and extension into the boundary
layer of moving air surrounding the cercus.

The movements of the ensemble of hairs will therefore depend
on the direction and dynamics of the air current. Thus, the internal
representation of any particular air current (e.g. the air current caused
by the wing beats of an approaching predatory wasp) will be a
complicated spatio-temporal pattern of activity across the entire array
of synaptic arborizations of these filiform afferents within the
cricket’s nervous system.

Since the beginning of studies of the cercal sensory system,
researchers have noted the extremely low inter-animal variability
in the placement and characteristics of the filiform hairs (Landolfa
and Jacobs, 1995; Landolfa and Miller, 1995; Walthall and Murphey,
1986). The importance of the cerci for the animal’s survival, the
coupling between cercal structure and function, and the extremely
low inter-animal variability of cercal receptor hair array structure
are all consistent with the conjecture that these structural attributes
have been subject to substantial selective pressure, and may be nearly
optimal from an engineering standpoint, if only we could determine
the appropriate, behaviorally relevant metrics for optimality.

Sensory receptor neurons
Each mechanosensory hair is innervated by a single spike-generating
mechanosensory receptor neuron. These receptors display directional
and dynamical sensitivities that appear to be derived largely from
the mechanical properties of the hairs themselves (Humphrey et al.,
1993; Kämper and Kleindienst, 1990; Landolfa and Jacobs, 1995;
Landolfa and Miller, 1995; Roddey and Jacobs, 1996; Shimozawa
and Kanou, 1984a; Shimozawa and Kanou, 1984b). The amplitude
of the response of each sensory receptor cell to any air current
stimulus depends upon the direction of that stimulus, and these
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Fig. 1. The cricket cercal system. (A) Acheta
domestica. The cerci are the two antenna-like
structures, covered with fine hairs, extending from
the rear of the abdomen. This is a female: the
ovipositor can be distinguished between the two
cerci. (B) Scanning electron microscope close-up of
a segment of the cercus. The cercus is
approximately 1 cm in length. (C) Computer
reconstructions of a primary sensory interneuron
(blue) and three primary sensory afferents (red, light
blue and brown) in their correct anatomical
relationships. These cells were stained in different
animals and the reconstructions were scaled and
aligned to a common coordinate system. Scale:
40 !m between tick marks on the scale bars. The
inset shows a cartoon of a cut-away view of the
cricket nervous system. The terminal abdominal
ganglion, where the sensory neurons and
interneurons are located, is indicated with a red
arrow.
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directional tuning curves of the receptor afferents are well described
by cosine functions (Landolfa and Jacobs, 1995; Landolfa and
Miller, 1995). The response amplitudes also depend upon the
frequency composition of the stimulus waveforms, and generally
follow the trend that would be predicted from the mechanical
filtering properties of the hairs: receptors innervating long
mechanoreceptor hairs (>900 µm) are most sensitive to low
frequency air currents (<150Hz), and receptors innervating medium
length hairs (500–900 µm) are most sensitive to frequency ranges
between 150 and 400Hz (Roddey and Jacobs, 1996; Shimozawa
and Kanou, 1984a; Shimozawa and Kanou, 1984b). Receptors
innervating the shortest hairs (50–500 µm) respond to frequencies
up to 1000Hz.

Internal representation of air current direction and dynamics
The axons of the receptor afferents project in an orderly array into
the terminal abdominal ganglion to form a continuous representation
(i.e. neural map) of the direction of air currents in the horizontal
plane (Bacon and Murphey, 1984; Jacobs and Theunissen, 1996;
Jacobs and Theunissen, 2000; Paydar et al., 1999). That is, the
afferent synaptic terminals form an ordered array across which there
is a continuous, systematic variation in the value of their peak
sensitivities to air current direction. The synaptic terminals from
afferents having similar peak directional sensitivities arborize in
adjacent areas, and the spatial segregation between afferent arbors
increases as the difference in their directional tuning increases.

The systematic mapping of stimulus direction across a subset of
the afferents has been demonstrated in several recent studies in which
anatomical and physiological measurements were taken from a
representative sample of afferents near the base of the cerci proximal
to the terminal abdominal ganglion (Jacobs and Theunissen, 1996;
Paydar et al., 1999; Troyer et al., 1994). Anatomical reconstruction
of the afferent arborizations was used to construct a three-
dimensional model of this proximal portion of the afferent map in
the form of a probabilistic atlas. This basic structure is shown in
Fig.2. By combining the predicted responses of each class of afferent
with this information about the spatial location of their terminal
arborizations within the neural map, predictions have been made of
the spatial patterns of synaptic activation that would result from
sustained, unidirectional air currents (Jacobs and Theunissen, 2000;
Paydar et al., 1999; Troyer et al., 1994). Recently, Ogawa and
colleagues actually visualized ensemble activity patterns of filiform
afferents using calcium imaging (Ogawa et al., 2006), and found
these patterns to be consistent with the predictions.

Preliminary predictions have also been made of the dynamic
spatio-temporal activation patterns across the ensemble of proximal
filiform afferents for sinusoidal air current stimuli (Jacobs and
Pittendrigh, 2002; Cummins et al., 2003). However, these predictions
of the dynamic response patterns may significantly underestimate
the complexity of the actual dynamic response patterns, since they
did not take differential conduction delay along the cercus into
account. As we have recently demonstrated, spikes arriving at the
terminal abdominal ganglion from distal cercal mechanoreceptors
have a significantly greater latency than spikes arriving from more
proximal receptors, due to the added conduction time along the
length of the cercus (Kennel et al., 2005). This ‘dispersion’ of the
spiking input from afferents, which would otherwise have identical
directional and dynamic response characteristics, could be of
considerable functional significance. In other words, the cercus is
acting as a ‘delay line’. We are currently investigating the differential
anatomical projections of these distal receptors, and examining the
functional significance of these delay-line characteristics.

Preliminary evidence suggests that the primary sensory interneurons
could, in fact, extract and use this delay information.

Primary sensory interneurons
The 1500 sensory afferents synapse with a group of approximately
30 local interneurons, and approximately 20 identified projecting
interneurons that send their axons to motor centers in the thorax
and integrative centers in the brain. It is important to note that these
20 or so projecting interneurons represent the entire ensemble for
all information captured by the 1500 sensory receptors and
transmitted to higher processing stages. This represents a huge
compression.

Like the afferents, these interneurons are also sensitive to the
direction and dynamics of air current stimuli (Jacobs et al., 1986;
Kanou and Shimozawa, 1984; Miller et al., 1991; Theunissen and
Miller, 1991; Theunissen et al., 1996). Researchers have measured
stimulus-evoked neural responses in several projecting and local
interneurons, using several different classes of air current stimuli
and electrophysiological techniques. Recently, optical recording
techniques using Ca2+-sensitive dyes have also been used to examine
the mechanisms underlying synaptic integration in cercal
interneurons (Ogawa et al., 2006; Ogawa et al., 2008). The stimuli
that have been used range from simple unidirectional air currents
to complex multi-directional, multi-frequency waveforms. Two
important general conclusions from all of these studies are as
follows.

(1) Primary sensory interneurons extract and encode information
about stimulus direction based solely on the shape and position of
their dendrites within the afferent map. In other words, stimulus
direction is represented by a ‘place code’ in the afferent map. This
excludes the necessity for synaptic specificity mechanisms, through
which the postsynaptic interneuron would connect to a specific
subset of presynaptic inputs based on an ‘identity code’ (mediated,
for example, by recognition of a specific cell-surface marker).

(2) The frequency sensitivity of each interneuron is a function
of two independent factors: (a) its inherent frequency filtering
properties, and possibly (b) the position of its dendrites within the
afferent map. That is, stimulus frequency is largely a function of
intrinsic and synaptic properties of the interneuron, but may also
emerge as a place code if the delay-line characteristics mentioned
above turn out to be of significance.

In the remainder of this review, we will focus on our recent
analyses of neural coding at this interface between the sensory
afferents and the primary sensory interneurons, using some analytical
approaches from information theory and statistics.

Neural coding in the cricket cercal system
Tuning curve analyses

Neural coding is defined as the mapping between stimuli in the
environment and their representation in patterns of electrical activity
in the nervous system. The earliest efforts toward discovering the
nature of these mappings stretch back over 80years to the work of
Adrian and colleagues on stretch receptors in the leg muscles of
frogs (Adrian and Zotterman, 1926). They employed what is now
known as the tuning curve technique: a stimulus is presented to the
nervous system in which a single parameter can be systematically
varied over the course of several trials. For each presentation of the
stimulus with a specific value of the parameter of interest, an output
of the nervous system is measured, generally a count of the number
of action potentials in a small window of time during or after the
stimulus presentation. Another tuning curve metric is to measure
the time to the first response that can be discriminated or, inversely,
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the mapping is reported as the minimum value of a stimulus
parameter that elicits any activity in the nervous system. Solving
the neural coding problem is then just reduced to determining the
input–output relationship defined by the function relating the values
of the stimulus parameter to the measured output of the cell. An
example of such a relationship is shown in Fig.3: the directional
tuning curve of interneuron right 10-2a from Acheta domestica.

Although this method is simple to use and yields a good first-
order assessment of neural function, it relies on two rather strict
sets of assumptions. First, it is assumed that a single, generally static
parameter of the stimulus is important for the nervous system. This
can be a problem when the nervous system actually depends on a
dynamic stimulus, or a stimulus that cannot be easily parameterized.
Second, the choice of how the response is measured necessarily

G. A. Jacobs, J. P. Miller and Z. Aldworth

Fig. 2. Anatomical prediction of synaptic connectivity between filiform sensory afferents and interneurons. (A) A reconstruction of interneuron right (R)10-2 is
shown in yellow. Afferent arbors from 12 different filiform hair receptors are shown in other colors. The color of each afferent corresponds to its direction of
peak activation. These 12 classes span the range of all different classes of receptor directional sensitivities. Inset cartoon shows the color code indicating
the preferred stimulus direction with respect to the cricket body coordinates. (B) Composite view (saggital) of 11 different sensory afferents from the left
cercus illustrating the continuous representation of direction selectivity within the nervous system. Cells with similar directional tuning arborize near each
other and those tuned to other directions are spatially segregated showing their color. (C) Image of the afferent map of air current direction, from both cerci,
with an image of the compartmental model of interneuron 10-2 imbedded in the map. Each directional class of afferent arbors is transformed into a
‘statistical cloud’ corresponding to the density of synaptic terminals for that stimulus direction. This provides a direct demonstration of the neural map of
direction. The overlap between the sensory interneuron with the afferent map of air current direction predicts synaptic connectivity from the afferents onto
that interneuron. Here we just mask the interneuron dendrites with the color corresponding to the statistical cloud of afferent synapses in that region.
(D) Image of the distribution of synaptic varicosities of the population of sensory afferents from the left cercus tuned to different air current directions from
the left cercus. Same view as in B. The varicosities form a continuous three-dimensional structure in the neuropil. Note that the peak directional tuning of
the varicosities changes continuously with location around the structure. Starting at the top of the structure (pink) and moving clockwise [red, yellow (out of
view), green and blue].
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requires a strong assumption about the nature of the code itself,
usually that the information about the stimulus is completely
contained in the firing rate.

The method has been extensively used to demonstrate the
directionality of the cercal system, beginning with the use of
directional oscillatory sound stimuli (Tokareva and Rozhkova, 1973;
Edwards and Palka, 1974; Palka et al., 1977; Palka and Olberg,
1977), and later being refined to stimuli consisting of single puffs
of air (Westin et al., 1977; Tobias and Murphey, 1979; Westin, 1979;
Aldworth et al., 2008; Miller and Jacobs, 1984; Jacobs and Miller,
1985; Jacobs et al., 1986; Miller et al., 1991; Theunissen and Miller,
1991; Bodnar et al., 1991; Baba et al., 1991; Baba et al., 1995; Kolton
and Camhi, 1995) (Z.A., A. G. Dimitrov, G. Cummins, T. Gedeon
and J.P.M., manuscript submitted). In one set of experiments, it was
shown that two bilateral pairs of interneurons (10-2a and 10-3a)
formed a functional unit capable of detecting air particle
displacement at moderate velocities from all 360° of space in the
horizontal plane (Miller et al., 1991; Theunissen and Miller, 1991).
Similarly, by statistically sampling the cercal afferent population,
Landolfa and colleagues were able to determine the directional
sensitivity of the entire afferent array (Landolfa and Jacobs, 1995).
These population-level tuning curves have in turn led to theoretical
work on how neural coding is implemented in populations of
neurons, both in interneurons (Salinas and Abbott, 1994; Butts and
Goldman, 2006) and afferents (Ergun et al., 2007).

These studies spanned the system from the receptor level to the
local and projecting interneurons of the terminal abdominal ganglia,
though most of the studies with air particle displacement stimuli
(rather than oscillatory sound stimuli) focused on interneurons 10-

2a and 10-3a. For the sake of completeness, average tuning curves
elicited by air particle displacement stimuli for 222 cells (127 of
whose morphology was confirmed by staining) from classes 8-1a,
9-1a, 9-1b, 10-1a, 7-2a, 8-2a, 9-2a, 9-3a, 10-2a and 10-3a are shown
in Fig.4. Interneuron 11-1a was never recorded from in over 500
recordings, but it has been reported to be sensitive to multiple
stimulus directions and especially stimuli with angular velocity [i.e.
vortices termed 11-1c (see Kämper, 1984) and NGI-5 (see Baba et
al., 1991)]. Fig. 4C shows the peak directions for all of the giant
interneurons with uni-modal tuning.

As detailed in (Miller et al., 1991), the four interneurons
composed of left and right 10-2a and left and right 10-3a form a
functional unit sensitive to low velocity air displacement from all
360° of directional space in the horizontal plane (Fig.4Biii). Based
on observed stimulus–response measurements, information theoretic
calculations demonstrated that the ensemble responses of these four
interneurons to uni-directional air puffs contain enough information
that an ‘upstream’ decoder could determine the direction of the
source with an accuracy of about 10°, even if that decoder were
limited to a simple ratio of spike counts as the operative neural
coding scheme (Miller et al., 1991; Theunissen and Miller, 1991).
It has been speculated that interneurons 9-2a and 9-3a may form a
second such functional unit sensitive to higher velocities of air
movement (Miller et al., 1991). Giant interneuron GI 7-2a and
probably GI 8-2a receive input from the clavate hairs and so are
sensitive to acceleration due to gravity (Sakaguchi and Murphey,
1983). But here and in other studies (Kämper, 1984; Kohstall-
Schnell and Gras, 1994) GI 7-2a was also found to respond to air
particle displacement at sufficiently large stimulus levels. Along
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Fig. 3. Directional tuning curve for interneuron 10-2a. (A) Single puffs of air from eight different directions relative to the cricket (top traces) elicit various
patterns of spiking activity (bottom traces) in an interneuron of class R10-2a. Scale bar: x 10 ms, y 875 mm s–1 (stimulus)/10 mV (intracellular membrane
potential). (B) To generate the tuning curve the same cell as in A was presented with 10 stimuli from each of 24 different directions in the horizontal plane
(15° separation between samples). The number of spikes elicited in the 60 ms window following stimulus onset was counted for each trial, and mean and
s.d. across trials is shown as a function of stimulus direction. The spontaneous firing rate of the cell was also determined, and the gray broken line shows
the expected number of spontaneous spikes in a 60 ms window. Note that stimuli from angles –15° to 105° inhibit the firing activity of this cell below the
spontaneous rate, which can also be seen as a slight hyperpolarization in the membrane potentials of A. (C) The mean values from B, plotted in polar
instead of Cartesian coordinates.
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with 8-2a, 7-2a has directional tuning such that the two pairs of
cells could form yet another functional unit, sensitive to very high
intensity air particle displacement (Fig.4Bi).

White noise, kernels, stimulus reconstruction and information rates
A second approach to the coding problem is the ‘white noise’ approach
of Wiener, popularized for use in neuroscience by Marmarelis, Naka
and colleagues (Wiener, 1958; Marmarelis and Naka, 1972). The goal
in this methodology is to predict the output of a potentially non-linear

system to a stochastic input signal, usually Gaussian white noise
(GWN). The white noise approach was first used to study the cercal
system in experiments on the afferent layer and local non-spiking
interneurons of the cockroach (Kondoh et al., 1991a; Kondoh et al.,
1991b). For the afferent layer the first- and second-order kernels
together provided a very good fit to experimental data, while in the
local interneuron the first- and second-order filters only combined to
describe about half of the neural response (the contribution of the
second-order filter was negligible).

G. A. Jacobs, J. P. Miller and Z. Aldworth
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Fig. 4. Directional tuning curves for ventral giant interneurons (vGIs) and dorsal giant interneurons (dGIs). (A) Mean Cartesian tuning curves for interneurons
with axons in the ventral group, with amplitude normalized to maximal firing rate. The shaded background represents ±1 s.d. across the populations of
specified neurons. Ai: 8-1a (medial giant interneuron, MGI); Aii: 9-1a (lateral giant interneuron, LGI); Aiii: 9-1b; Aiv: 10-1a. (B) Mean Cartesian tuning curves
for dGIs, grouped into potential functional units (data format as in A). Bi: 7-2a and 8-2a; Bi: 9-2a and 9-3a; Bi: 10-2a and 10-3a. (C) Representation of peak
directional selectivity of all GIs with unimodal directional tuning in relation to the cricket. R, right; L, left.
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Bialek and colleagues approached the neural coding problem from
the organism’s viewpoint. Rather than trying to model the encoding
problem (i.e. how stimuli get transduced to neural output), their
method addresses decoding: estimation of the stimulus that elicited

a specific spike train (Bialek et al., 1991; Rieke et al., 1997). The
mathematics is essentially the same, though in this case the neural
response becomes the input variable, while the ‘output variable’
that is being estimated is the stimulus. This approach has been called

A B C

D E

F G H

Fig. 5. Stimulus reconstruction and coherence measurements. (A) A 500 ms recording of 10–200 Hz band-passed Gaussian White Noise (GWN;
r.m.s.=73 mm s–1) stimulation (lower panel) and elicited response (upper panel) in a right 10-2a interneuron (same cell as in Fig. 3). (B) Linear kernel
obtained from a full 100 s of simultaneously recorded stimulus and response data. (C) Stimulus from A (black) and best linear estimate obtained from
stimulus reconstruction using kernel in B (broken blue line). The upper panel shows the full stimulus and stimulus estimate; the lower panel shows both after
low-pass filtering below 50 Hz. (D) Upper panel: stimulus–response coherence mean (black line) ±1 s.d. (gray background), calculated over 10 repeats of
stimulus. Lower panel: power spectra of stimulus (upper and lower panels calculated from data in A). (E) Stimulus reconstruction using kernel from B on a
test data set where the stimulus was drawn from the same statistical distribution as the stimulus in A (upper and lower panels same convention as in C).
(F) Simultaneous recording for 500 ms of R10-2a (blue, not the same cell as A) and L10-3a (green) in response to a 10–300 Hz band-passed GWN stimulus
(lower trace, r.m.s.=43 mm s–1). (G) Estimated reconstruction of stimulus in F using combined kernel from R10-2a and L10-3a (upper and lower panels same
convention as in C and E). (H) Upper panel: coherence curves from data in F obtained using only cell R10-2a (blue), only cell L10-3a (green), and both cells
together as a functional unit (red). Lower panel: power spectrum of stimulus from F.
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‘reverse reconstruction’ to denote its inversion of the more traditional
white noise analyses. This type of analysis enables elements of
information theory to be applied to the problem of characterizing
a neuron’s input–output characteristics, and allows quantitative
calculations of the amount of information that could be decoded
from a neuron’s spike trains, in terms of bits (Shannon, 1968; Cover
and Thomas, 1991), given a set of assumptions about that cell’s
encoding scheme. This approach has been used to investigate coding
in the first two layers of the cricket cercal system, yielding valuable
insights. One study of frequency sensitivity to broadband
(10–400Hz) stimuli concluded that all four cells in one functional
ensemble (left and right 10-2a and 10-3a) have identical frequency
tuning, concentrated in the 10–50Hz range (Theunissen et al., 1996).
An associated study applied the same information theoretic approach
to analyze dynamical encoding characteristics of filiform
mechanoreceptors.

Fig.5 shows several aspects of this type of analysis of data from
interneurons 10-2a and 10-3a. The cell under study was stimulated
with a dynamically changing air current, directed along the axis
corresponding to that cell’s peak sensitivity. The velocity of the air
current varied according to a band-limited (10–200Hz) GWN
function. The spike train elicited by this stimulus was recorded (Fig.
5A). The first-order Volterra kernel (also referred to commonly as
the first-order ‘stimulus reconstruction’ kernel) was then extracted
(Fig. 5B). This kernel corresponds to the best estimate of the average
stimulus waveform leading up to a single spike, if the coding is
linear. Within the context of neural coding, the notion of linearity
does not refer to the spike-generation process itself: it is well known
that the Hodgkin–Huxley equations are non-linear, i.e. that doubling
the current input to a cell will yield a voltage response that is not
necessarily double. Rather, linearity of coding implies that all of
the information in patterns of two or more spikes can be decoded
by analyzing ‘one spike at a time’, i.e. that the information in spikes
is additive. In other words, the ‘meaning’ of a short-interval doublet
of spikes would correspond to the ‘meaning’ of two single spikes
offset by the observed doublet interval. It is certainly possible to
have a non-linear process like spike generation serving as the basis
for the production of a linear coding scheme (e.g. rate coding), since
it is a change in the spike rate, not the spike shape, that encodes
the information.

The kernel waveform is interesting in and of itself: it yields an
estimate of the aspect of the stimulus that leads to a spike. These
kernels can also be used to quantify the ‘performance characteristics’
of a cell under the assumption of linearity, by (a) obtaining an
estimate of the entire stimulus waveform that was presented to the
cell, and then (b) comparing that estimate with the actual waveform
that had, in fact, been presented. The approach is conceptually very
simple: starting with the observed spike train elicited in the
experiment, construct an estimated stimulus waveform by ‘stamping
down’ an image of the reconstruction kernel every time a spike
occurred, and add up all of the kernel waveforms. In regions where
spikes are isolated by intervals longer than the duration of the kernel,
the estimated stimulus waveform will simply be a kernel-shaped
bump in the stimulus waveform. Where there are sequences of spikes
that come very close together in time, the kernels will overlap, and
the summation over the kernels will yield a complex waveform.
The next step of the analysis is simply to compare the estimated
stimulus waveform with the actual waveform: if the estimate and
actual stimulus are superimposable, then the cell was ‘perfectly’
encoding the stimulus waveform. This is, of course, never the case:
the estimate will deviate from the actual stimulus in some respects.
The extent to which the estimate deviates from the real stimulus

yields a quantitative measure of (a) the limitations of the cell in
capturing the information about the stimulus, (b) the ‘noise’ in the
encoding process, and (c) the possible errors in assumptions about
the encoding scheme. In the studies of the cricket interneurons, it
was found that stimulus waveform could be decoded with relatively
high fidelity using a linear decoder, but only within a relatively
narrow frequency range (10–70Hz).

In these studies, the measure used for assessing the ‘fidelity’ of
encoding was the magnitude squared coherence function, which has
also been called the ‘gain function’ in the neurophysiological
literature. A mathematical derivation is beyond the scope of this
review, but an excellent description and discussion of this function
is presented in Borst and Theunissen (Borst and Theunissen, 1999).
Briefly, the gain function represents the encoding characteristics of
the neuron as a function of frequency: the higher the gain at a
particular stimulus frequency, the more information is encoded by
that cell about that frequency. A gain of 1 would correspond to a
perfect match or superimposability between the estimated and actual
stimuli, and thus indicate a ‘perfect’ encoder, zero noise, and a valid
set of assumptions. A gain of zero would indicate a substantial
problem in one or more of these three aspects of the analysis. Fig. 5D
demonstrates the narrow band encoding mediated by this cell: this
neuron encodes information about the direction of air current stimuli,
but only for those stimuli with frequency components within the
10–50Hz range.

Non-linear encoding
As mentioned above, the kernel-based analyses of the cercal sensory
system were based on the assumption that neural coding is a linear
process in those cells. This is equivalent to the assumption that the
best estimate of the stimulus waveform leading up to the doublet is
what you would predict by adding up two copies of the kernel for a
single isolated spike (Fig.5B), offset by the doublet interval, as
described above. Aldworth and colleagues (Aldworth et al., 2005)
(Z.A., A. G. Dimitrov, G. Cummins, T. Gedeon and J.P.M., manuscript
submitted) have just demonstrated that this is not the case.
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Fig.6 demonstrates that the reverse reconstruction method (based
on the use of the kernel approach assuming linearity) grossly
underestimates the information content in the neural spike train, as
assayed by a model-independent approach called the ‘direct method’
(Strong et al., 1998; Victor, 2002; Paninski, 2003; Nemenman et
al., 2004; Kennel et al., 2005; Shlens et al., 2007). This figure also
reports the interesting result that the cricket interneurons are
transmitting information about stimulus dynamics at rates of up to
130 bits s–1. Through a novel analytical approach, Aldworth
determined a range of spike doublets that are in essence a different
neural symbol from two single spikes, and derived the kernel for
these doublets. His new approach also corrected a substantial source
of error implicit in earlier approaches toward kernel extraction, and
enables the neurophysiologist to get an accurate estimate of the
temporal resolution of neural encoding. For the cricket sensory
interneurons we study, the temporal precision is of the order of 5ms.
In other words, a higher-order circuit would not be able to decode
the time of occurrence of an event that elicited a spike in that neuron
with a temporal precision better than 5ms.

Conclusions
Our general concept of the functional ‘engineering design’ of the
cercal system, derived from all of the work that has been done on
this system in our lab and other labs over the last few decades,
supports the concept of the cercal system being a generalist system
(like an auditory or visual system) rather than a specialized feature-
detection and escape system using ‘command neurons’ (like the
lateral giant interneurons in the escape system in crayfish or the
Mauthner cells in zebra fish). That is, there is no strong evidence
for feature detector cells at either the receptor or first-order
interneuron stages of processing. Instead, the filiform
mechanoreceptor array captures a very well-sampled image of the
air current field surrounding the animal, and represents the image
of that field as activity across a continuous map of that field in the
terminal abdominal ganglion (TAG), in the same sense that the
information from our own retinae project a continuous map of visual
space into our visual cortex. The first-order sensory interneurons
that extract information from this sensory map at this first processing
stage are also generalists: the computations these interneurons appear
to carry out include (at least) the following operations: (a) noise
reduction through signal averaging across many sensory afferents,
(b) extremely efficient re-encoding of the direction of air current
stimuli, via a huge dimensional reduction of the activities of the
1500 sensory afferents down to a four-interneuron ortho-normalized
code (Theunissen and Miller, 1991; Salinas and Abbott, 1994), (c)
coding of the spectral composition of dynamic air currents via the
relative activity levels of different interneurons having different
frequency sensitivity bands, and (d) (still speculative) the
representation of the curl of air currents via interneurons sensitive
to vortices rather than linear air streams. The information available
at this first-order sensory interneuron interface is extraordinarily
good from an engineering perspective, in terms of the temporal and
angular accuracy and precision. Based on this generalist information
represented at the first stage of processing, more complex processing
operations (such as feature detection and target identification) are,
presumably, computed at higher levels of the nervous system by
more specialized cells and circuits.
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