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Statistical measures

We first considered simple statistical measures
for single variables (mean, variance).

We next considered measures for the relationship
between two (stationary) random variables
(covariance, Pearson’s correlation coefficient;
regression).

Extension to K variables: pairwise relationships
(covariance matrix).

Now, extension to time-series: relationships
between different time-varying signals.



Time-series data

g: a temporally varying signal

{. e gt—l? gt? gt—|'1 S } sampled at discrete intervals

h: another time-varying signal,
(o her heyhegr )

sampled at the same times

How many variables? In g alone?



Time-series data

g: a temporally varying signal

{. e gt—l? gt? gt—|—1 S } sampled at discrete intervals

Time-series not independent sampling.

Could think of response at each time point as separate
(though typically not independent) variable.

If length(g) = T, then T variablesin g.

Same time-point in repetitions of the series from same
initial condition: multiple samples of that variable.



Finding structure between time-series

g: a temporally varying signal

{. e gt—l? gt? gt—|—1 S } sampled at discrete intervals

h: another time-varying signal,
(o her heyhegr )

sampled at the same times

How about trying previously seen statistical measures?

compute cov(g, h)



Example of two time-series a1

g =sin(20 *xpixt)
h=cos(20*pixt)
figure;hold on;plot(g);plot(h, ')

ylabel('response’)
xlabel('time’)
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C(g,h) =0,(gh) =0

Correct but unsatisfying:

g, h similarly time-varying functions: the same function with a /2 shift.



Definition: cross-correlation function

[---glig 9~ glil glé glf 9|§ 9|3
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take time-by-time product, add all terms



Definition: cross-correlation function

O

Cyn(n) = Y g (m)h(m+n)

n=1~:
[°--g|i3 gliz gT_l glé glf g|§ gl§~-f
——[+h_o h_q hy h1 hy hs hg---

h — tape shifted leftwards by 1




Measure of relatedness at different time shifts

Con(n) = Y g"(m)h(m +n)

* The cross-correlation function is a measure of covariance
between g, h at different relative time-shifts (for zero-
mean or mean-subtracted signals).

* How is g at any time (linearly) related to h n time-steps
away?



Cross-correlation function for finite-length signals

{91, 9~}
{h17°” 7hN}

g, h: time-series of length N

Conln) = " " (m)h(m +n)

/ m=1

?,\\/,e/rzi)etz\;is Total length of cross-correlation: 2N-1

Zero-shifted entry: N



Properties of the cross-correlation

Cyn(n) # Chy(n): does not commute (contrast
with covariance).

In fact, C,,(n) = Cpy(—n): shifting h to right
relative to g: equivalent to shifting g to left relative
to h. (Same plot, flipped time axis.)

Ordering matters: tells which signal leads the other.



(Previous) example
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Cross-correlation of example series

figure;plot(xcorr(h,g), k')

dex (n)")
(‘Cen(n)’)
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Signals of length N = 1000. Cross-correlation of length 2N-1.



o)

Cross-correlation of example series

figure;plot(xcorr(h,g), k)

Matlab: signals of length N have 0-shift at N in xcorr xlabel("time index (n)’)
500 T T T T ylabel('Cgn(n)")
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* In Cy4u(n): peak at left. Interpretation: h leads g, or h must be shifted right
(negative n) to line up with g. In present example, cosine (h) leads sine (g) in
phase.

* Multiple peaks: periodic re-alignment of cos with sin at multiples of period

¢ Caution! Cy(t) is xcorr(h,g) in Matlab: note reversed order of g, h!



Cross-correlation of example series

figure;plot(xcorr(h,g), k')
dex (n)")
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Decay in amplitude due to finite length of g, h: shift nis a sum over N-/n[ terms, so
amplitude will go to 0 as shift goes to N.



Autocorrelation function

* Special case of cross-correlation: signal
correlation with itself at all time shifts.

e Commonly used to detect temporal patterns
(periodic or otherwise) within noisy time-
series data.

 Symmetric; central peak always at O time-lag.



ng(n)

Autocorrelation example
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BACK TO A MODELING
PERSPECTIVE



Time-series data

g: a temporally varying signal

{917 C o 7gN} sampled at discrete intervals

If g is time-series of length N, then N variables within g.

But then should construct NxN covariance matrix with (o, 8)
entry given by cov(g,ggs), and N(N+1)/2 distinct entries.

Autocorrelation: only (2N-1)/2 distinct entries (1/2 because
of symmetry about O-time lag).



Autocorrelation and time-series data

What are we throwing out when studying only the autocorrelation
of a time-series g (N distinct entries), compared to the NxN
covariance matrix of its components (N(N+1)/2 distinct entries)?



Autocorrelation and time-series data

* One entry in cross-correlation measures relationship
between terms in g at a fixed time-lag, summed over
all times.

* Assumption of time translation-invariance:
relationship between terms in g at lag n is similar,
regardless of starting time.

* Same assumption in cross-correlation.



Summary

Time-series inherently more complex than random draws
from an independent system.

Look for: translation-invariant temporal patterns within
and across time-series.

Auto- and cross-correlation functions.

Each term an average across the entire time-series:
reduced noise.



