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1 Problem set-up

Suppose we have a m-dimensional vector y = {y1, ..., ym} whose components
represent scalar output measurements to be related to m input vectors x1, . . . ,xm,
each of dimension n. We want to find weights w = {w1, . . . , wm} such that
one can predict the measurement outcomes y as a linear combination of the input
vectors x1, . . . ,xm: yj ≈ wTxj =

∑m
i=1 xjiwi.

In principle, we can repeat measurements at will so that m can be very large,
whereas n is set by the complexity of the model and should be assumed compar-
atively small n < m. For instance, think of n as the number of relevant features
in the model. Because the vector y lies into a much larger m-dimensional space
than the at most n-dimensional space spanned by x1, . . . ,xm, it is in general im-
possible to perfectly reconstruct y. For this reason, regression methods propose
to minimize the prediction error instead of trying to achieve a perfect reconstruc-
tion. Specifically, in linear least-square regression, we aim at finding the weights
w which minimize the squared prediction error E(w). This can be formally stated
as follows:

w? = argmin
w

E(w) with E(w) =
m∑
j=1

(
yj −

n∑
i=1

xjiwi

)2

.

The squared prediction error E(w) can be interpreted geometrically as the squared
Euclidean length of the residual vector defined by y −

∑n
j=1wjxj . Thus, E(w)

can also be written as

E(w) = ‖y −Xw‖2 ,

where ‖u‖ denotes the length of vector u and where X is the matrix whose rows
are x1, . . . ,xm. As expected, the squared prediction error is a non-negative num-
ber that is zero only if the output y lies in the span of x1, . . . ,xm. However, this
generally does not happen due to the dimensionality mismatch m > n and per-
fect reconstruction is in general impossible. To address this point, the method of
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linear least-square regression resorts to looking for weights w that minimize the
Euclidean square length of the residual vector. This approach, which involves a
combination of calculus and linear algebra, will yield the best linear prediction of
y based on observing x1, . . . ,xm.

2 Solution via calculus and linear algebra

Throughout this section, bear in mind that the core motivation behind linear least-
square regression stems from the dimensionality mismatch m < n. This can be
stated concretely by saying that the matrix X has many more rows than columns.

The first step of linear least-square regression is to compute the derivative of the
squared prediction error E with respect to an arbitrary weight wk, while holding
all the other weights fixed:

∂E(w)

∂wk
=

m∑
i=1

∂

∂wk

(
yj −

n∑
i=1

xjiwi

)2

,

= 2
m∑
i=1

(
yj −

n∑
i=1

xjiwi

)[
∂

∂wk

(
yj −

n∑
i=1

xjiwi

)]
,

The term in between square bracket is actually much simpler than it looks as it is
the derivative of a linear function of wk with linear coefficient xik.

∂

∂wk

(
yj −

n∑
i=1

xjiwi

)
= xjk .

The weights w that minimize the squared prediction error E are those weights for
which the derivatives of E with respect to any wk is zero. Based on our computa-
tion of the derivative of the squared prediction error, this means that the weights w
satisfy the following set n linear equations:

∂E(w)

∂wk
= 2

m∑
i=1

(
yj −

n∑
i=1

xjiwi

)
xjk = 0 , with 1 ≤ k ≤ n .

The second step of linear least-square regression is to solve the above set of equa-
tions via matrix algebra. To see how, observe that our set of equations can be
conveniently expressed in matrix form by using the transpose operation. Indeed,
using the fact that xjk = (XT )kj , we can write the system of equation in matrix
form as

XT (y −Xw) = 0 ,
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showing that the weights w are solution of the matrix equation

XTXw = XTy .

The matrix XTX is a n-by-n square matrix that is invertible if n ≥ m (which
is true) and if the matrix X has rank n, i.e. if the columns of X are linearly
independent (which need to be checked). Under this assumption of invertibility,
the weight w are obtained via matrix inversion

w? = (XTX)−1XTy ,

thereby answering our problem of linear least-square regression. Moreover, the
best approximation to the original vector y, denoted by y?, can be recovered as:

y? = Xw? = X(XTX)−1XTy .
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