Wiener-Hopf kernel estimation

NEU 466M
Spring 2020

Problem setup

$$
\begin{array}{ll}
\left\{\cdots x_{t-1}, x_{t}, x_{t+1} \cdots\right\} & \begin{array}{l}
\text { time-varying signal (stimulus) } \\
\text { sampled at discrete intervals }
\end{array} \\
\left\{\cdots y_{t-1}, y_{t}, y_{t+1} \cdots\right\} & \text { time-varying signal (response) }
\end{array}
$$

Assume y derived from x, through convolution with unknown kernel h and small noise term ε :

$$
y(n)=\sum_{m=M_{1}}^{M_{2}} x(n-m) h(m)+\epsilon(n)
$$

$$
\left\{h_{M_{1}}, \cdots, h_{M_{2}}\right\}_{\substack{\text { if } \mathrm{M}_{1}=0 \text { : causal. }}}^{\text {unknown kernel. }}
$$

Question

$$
y(n)=\sum_{m=M_{1}}^{M_{2}} x(n-m) h(m)+\epsilon(n)
$$

What is the best possible estimate of h, given x, y ?

Minimization problem

$$
\begin{gathered}
E=\frac{1}{2} \sum_{n=-\infty}^{\infty}\left(y_{n}-\sum_{m=M_{1}}^{M_{2}} x_{n-m} h_{m}\right)^{2} \\
\hat{h}_{M_{1}} \cdots \hat{h}_{M_{2}}=\arg \min _{h_{M_{1}} \cdots h_{M_{2}}} E
\end{gathered}
$$

Find h that minimizes the squared error between measured y and values predicted from x by the model.

Minimization problem

$$
\begin{gathered}
E=\frac{1}{2} \sum_{n=-\infty}^{\infty}\left(y_{n}-\sum_{m=M_{1}}^{M_{2}} x_{n-m} h_{m}\right)^{2} \\
\hat{h}_{M_{1}} \cdots \hat{h}_{M_{2}}=\arg \min _{h_{M_{1} \cdots h_{M_{2}}}} E
\end{gathered}
$$

Compare: (very similar) linear regression framework.

Solve: minimization problem

$$
\begin{aligned}
0=\frac{\partial E}{\partial h_{i}} & =-\sum_{n}\left(y_{n}-\sum_{m=M_{1}}^{M_{2}} x_{n-m} h_{m}\right) x_{n-i} \\
& =-\sum_{n} y_{n} x_{n-i}+\sum_{m}\left(h_{m} \sum_{n} x_{n-m} x_{n-i}\right) \\
& =C_{i}^{x y}-\sum_{m=M_{1}}^{M_{2}} h_{m} C_{i-m}^{x x}
\end{aligned}
$$

Wiener-Hopf equations

input auto-correlation

- This is the least-squares optimal solution for the unknown kernel h.
- It depends on the cross-correlation of the input and the response (STA).
- But it also depends on the auto-correlation of the input, unlike the STA.

Linear regression as special case of Wiener-Hopf

$$
C_{i}^{x y}=\sum_{m=M_{1}}^{M_{2}} h_{m} C_{i-m}^{x x}
$$

No time-lags in auto- and cross-correlation since x, y independent samples not time series (so $i=0$). Only one term h (the slope between x, y), no convolution, so $M_{1}=M_{2}=0$

$$
C^{x y}=C^{x x} h_{0}
$$

Optimal least-squares estimate of slope in linear regression (look back at notes)

Wiener-Hopf equations: solution?

$M_{2}-M_{1}+1$ unknowns h_{m}. $M_{2}-M_{1}+1$ equations: $i^{\text {th }}$ equation obtained by differentiating w.r.t. h_{i}. Thus, generically, a solution exists.
Easy way to solve?

