MATLAB for beginners

KiJung Yoon, ${ }^{1}$
${ }^{1}$ Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, USA

MATLAB Tutorial I

- What is a matrix?

1) A way of representation for data (\# of rows: dimensionality, \# of columns: the number of data).

2) Linear transformation (e.g. scaling, rotation, projection, reflection etc.).

$$
T=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

3) A system of linear equations.

$$
\left\{\begin{array}{l}
x-3 y=5 \\
2 x+5 y=6
\end{array} \Rightarrow\left[\begin{array}{cc}
1 & -3 \\
2 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
5 \\
6
\end{array}\right]\right.
$$

-Why MATLAB?

MATLAB (matrix laboratory) is an interactive, matrix-based numerical computing system, which works with essentially only one kind of object, which is a matrix.

Easy to learn. Not good for large software projects.
 Many useful features ('toolboxes').

Standard: used all over by engineers and scientists, etc.

- How to open it?

Click the matlab icon generated after installation, or type "matlab" or "matlab -nodisplay" in a terminal window (especially for opening many matlab sessions).

- How to create a matrix?
$» \mathrm{~A}=[123 ; 456 ; 789]$
» $\mathrm{A}=$ [

123

456
$789]$

- Scalars or vectors are a special case of matrix:
» $\mathrm{B}=[1]$
» $\mathrm{B}=1$
$» B=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$
$» \mathrm{~B}=[1 ; 2 ; 3]$
- How to reference an element, a row, or a column vector:

» $\mathrm{A}(2,3)$
» $\mathrm{A}(1,:)$
» $\mathrm{A}(1: 2,:)$
» $\mathrm{A}(:, 3)$
» $\mathrm{A}(:)$
- Matrix arithmetic:
$+\quad$ addition: $(A+B)_{i j}=A_{i j}+B_{i j}$
$-\quad$ subtraction: $(A-B)_{i j}=A_{i j}-B_{i j}$
* multiplication: $(A * B)_{i j}=\sum_{k=1} A_{i k} B_{k j}$
.* element-by-element multiplication: $(A . * B)_{i j}=A_{i j} B_{i j}$
/ division: $A / B=A * B^{-1}, A \backslash B=A^{-1} * B$
./ element-by-element division: $(A . / B)_{i j}=A_{i j} / B_{i j}$
$\wedge \quad$ power: $A^{\wedge} 2=A * A$
$\therefore \quad$ element-by-element power: $\left(A^{\wedge} 2\right)_{i j}=A_{i j} A_{i j}$
transpose: $\left(A^{\prime}\right)_{i j}=A_{j i}$

- Exercise for matrix arithmetic:

» \% try addition and subtraction between the 1 st and 2 nd columns of A .
» $A(:, 1)+A(:, 2)$
» $A(:, 1)-A(:, 2)$
$» \%$ try element-wise square and transpose of the 1 st row of A .
» $A(1,:) . \wedge 2$
» $A(1,:)^{\prime}$
$» \%$ try inner product of the 1 st and 2 nd columns of A .
» $A(:, 1)^{\prime} * A(:, 2)$
» \% try inner product of the 1 st and 2 nd rows of A .
» $A(1,:) * A(2,:)^{\prime}$
$» \%$ try element-wise product of the 1 st and 2 nd columns of A .
» $A(:, 1) . * A(:, 2)$

- Usage of colon and semicolon

1) Matrix row separator: When used within square brackets to create a new matrix or concatenate existing arrays, the semicolon creates a new row in the array.
2) If the last character of a statement is a semicolon, the printing is suppressed, but the assignment is carried out. This is essential in suppressing unwanted printing and intermediate results.
» $x=\sin (A)$;
» $\mathrm{x}=\sin (\mathrm{A})$
3) The colon notation can be used to access sub-matrices or sub-vectors of a matrix.
4) Range specifier: A colon allows ones to generate a series of numbers without the use of loops, which will be studied in the next class.
> $\mathrm{x}=1: 10$
» $x=10:-1: 1$
» $\mathrm{x}=0: 0.5: 3$

- What is M-files?

MATLAB can execute a sequence of statements stored in a file. Such files are called M-files because they must have the file type of ".m" as the last part of their filename. Much of your work with MATLAB will be in creating and refining M-files. M-files are usually created using your local editor. There are two types of M-files: script files and function files.

1) Script files consist of a sequence of normal MATLAB statements. If the file has the filename, say, test.m, then the MATLAB command test will cause the statements in the file to be executed.
» \% write test.m with the following pseudo-code:
» \% type $\mathrm{cmd}+\mathrm{n}$ to create a new file.
» \% make a column vector originating from $(0,0)$ to $(2,1)$, and assign it to \mathbf{x}.
» $x=[2 ; 1]$;
» \% make a scaling matrix (scale factor : 2), and assign it to A.
» $A=[20 ; 02] ;$
» \% scale up \mathbf{x} twice, assign it to y , and print it out.
$\gg=A * x$
2) Function files provide extensibility to MATLAB. You can create new functions specific to your problem which will then have the same status as other MATLAB functions. (This was not studied in the class.)
$» \%$ write scaling.m that scales up a vector by an arbitrary amount β.
» function [vScaled] = scaling(vInput, beta)
» scaleMat = [beta 0; 0 beta $]$;
» vScaled $=$ scaleMat * vInput;
3) Modify test.m by incorporating the scaling function. (This was not studied in the class.)

- How to make a 2D plot?

» \% "doc functionname" displays documentation for the functionality specified by name.
» doc plot
» \% plot the input vector \mathbf{x} and the scaled vector \mathbf{y}
» \% set axis limit, marker(size, color) and show axis label, title, legend, etc.
» \% refer to the attached file test.m

