MATLAB for beginners

KiJung Yoon, ${ }^{1}$
${ }^{1}$ Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, USA

MATLAB Tutorial II

- Functions for matrix analysis

i) For creating a vector of evenly spaced entries.

```
u = 1:20
u = linspace(1,20,20)
v = 0:20:100
v = linspace (0,100,6)
```

ii) For $\overrightarrow{\mathbf{v}} \in R^{n \times 1},\|\overrightarrow{\mathbf{v}}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}$
norm (v)
sqrt ($\mathrm{V}^{\prime} * \mathrm{v}$)
iii) For creating $X \in R^{3 \times 2}$ of all zeros:

```
X = [0 0;0 0;0 0]
X = zeros(3,2)
```

iv) For creating $X \in R^{3 \times 2}$ of all ones:
$X=\left[\begin{array}{llll}1 & 1 ; 1 & 1 ; 1 & 1\end{array}\right]$
$\mathrm{X}=$ ones $(3,2)$
v) For creating $X \in R^{3 \times 2}$ of random values sampled from a uniform distribution of the interval [01]:

```
X = rand (3,2)
X = 2*rand(3,2) % random values sampled from a uniform distribution of the interval [0 2]
```

vi) For creating diagonal matrix X whose diagonal elements are [llll 123]:

```
X =[[1 0 0;0 2 0;0 0 3}
X = diag([llll
X = diag([1;2;3])
```

vii) For getting diagonal elements from a square matrix X :
$[\mathrm{X}(1,1) ; \mathrm{X}(2,2)$; $\mathrm{X}(3,3)]$
diag (X)
viii) For creating identity matrix $I_{3 \times 3}$:
$I=\left[\begin{array}{lllllll}1 & 0 & 0 ; & 1 & 0 ; & 0 & 1\end{array}\right]$
I = eye (3)
ix) Sum of diagonal elements:
$X(1,1)+X(2,2)+X(3,3)$
trace (X)
x) For computing the inverse of a square matrix X : (we will learn the concept of matrix inverse in next class)

```
Y = 1/(X(1,1)*X(2,2)-X(1,2)*X(2,1)) * [X(2,2) -X(1,2); -X(2,1) X(1,1)] % only when X is 2 by 2 matrix
Y = inv(X)
```

xi) For computing the determinant of a square matrix X :
$d=X(1,1) * X(2,2)-X(1,2) * X(2,1) \%$ only when X is 2 by 2 matrix
$d=\operatorname{det}(X)$

- Conditional statements

======== Syntax ========
if expression (e.g. $x>2$)
statements (e.g. $y=3$)
elseif expression (e.g. $x<1$)
statements (e.g. $y=1$)

else

statements (e.g. $y=2$)
end

- Exercise: conditional statements

```
% Assign two row vectors [1 2] and [3 4 [ to u and v, and write a matlab code that performs
% the addition of the two vectors if a conditional variable 'cond' is equal to 1,
% or that performs the inner (dot) product of them.
u = [ll 2}]
V = [3 4];
cond = 0; % 'cond' needs to be pre-assigned by a value. You can try many different values.
if cond == 1
    u}+
else
    u*\mp@subsup{v}{}{\prime}
end
```


- Loop control statements

i) for statements loop a specific number of times, and keep track of each iteration with an incrementing/decrementing index variable.

```
x(1) = 0;
x(2) = 1;
for n = 3:10 % the following statement is executed until n becomes 10 by incrementing 3 in step of 1
    x(n)}=x(n-1)+x(n-2
end
```

ii) while statements loop as long as a condition remains true.

```
x(1) = 0;
x(2) = 1;
n = 3;
while n <= 10 % the following statements are executed as long as n is less than or equal to 10
    x(n)}=x(n-1)+x(n-2
    n = n + 1;
end
```

The above two examples i) and ii) generate Fibonacci numbers.

- Loop vs. Vectorization

MATLAB is optimized for operations involving matrices and vectors. The process of revising loop-based, scalar-oriented code to use MATLAB matrix and vector operations is called vectorization. Vectorizing your code is worthwhile for several reasons: ${ }^{[d o c ~ v e c t o r i z a t i o n] ~}$
i) Appearance: Vectorized mathematical code appears more like the mathematical expressions found in textbooks, making the code easier to understand.
ii) Less Error Prone: Without loops, vectorized code is often shorter. Fewer lines of code mean fewer opportunities to introduce programming errors.
iii) Performance: Vectorized code often runs much faster than the corresponding code containing loops.

```
% Create a vector of one cycle of a sine wave (t from 0 to 2*pi in step of 0.001)
% by using for-loop and vectorized form.
% For loop form
tic; % tic starts a stopwatch timer to measure the internal time at execution of the tic command
n = 1;
for t = 0:0.001:2*pi;
        x(n,1) = sin(t);
    n = n + 1;
end
toc; % toc reads the elapsed time from the stopwatch timer started by the tic function
% Vectorized form
tic;
t = 0:0.001:2*pi;
y = sin(t);
toc;
```

- Q: Construct 3 by 3 identity matrix in the following four different ways:
i) for loop
ii) while loop
ii) diag and ones
iii) eye
i) for loop

```
X = zeros (3,3);
for n = 1:3
    X(n,n) = 1;
end
```

ii) while loop
$X=\operatorname{zeros}(3,3) ;$
$\mathrm{n}=1$;
while $\mathrm{n}<=3$
$X(n, n)=1 ;$
$\mathrm{n}=\mathrm{n}+1 ;$
end
iii) diag and ones
$\mathrm{X}=\operatorname{diag}(\operatorname{ones}(3,1))$;
ㅇ OR
$\mathrm{X}=\operatorname{diag}(\operatorname{ones}(1,3))$;
iv) eye
$x=$ eye(3);

