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What does modeling mean?

example of ‘a’ example of ‘b’

Pixels xi with values 1 or 0 (black or white).



What does modeling mean?

example of ‘a’ example of ‘b’

What is ‘a’-ness, versus ‘b’-ness?



Equivalent problem encountered by electrophysiologists

Categorize recorded spike as coming from neuron a or b

{x1, x2, · · · , xN} ! ‘a’

{x0
1, x

0
2, · · · , x0

N} ! ‘b’

figure from Quian Quiroga



What does modeling mean?

example of ‘a’ example of ‘b’

What is ‘a’-ness, versus ‘b’-ness?



Model: relationship between data and 
its category

256⇥ 256 pixels : N = 65536

Store every image with its letter label?

{x1, x2, · · · , xN} ! ‘a’

{x0
1, x

0
2, · · · , x0

N} ! ‘b’



Model: store every possible image 
with corresponding letter label?

256⇥ 256 pixels : N = 65536

{x1, x2, · · · , xN} ! ‘a’

{x0
1, x

0
2, · · · , x0

N} ! ‘b’

Number of 256⇥ 256 bw images: 265536 ⇠ 1020000

Atoms in universe: ⇠ 1080

Houston, we have a problem. 



Storing each data, category pair

• Need too many examples/data to fill grid between 
inputs to categories! “Curse of dimensionality”

• Too much data to store! 

à Compactness

• Not predictive: What to do with new example? 

à Generalizability



What we want from a model: compactness and 
generalizability.



One solution: feature selection

• Look at some much smaller set of 
characteristic features that define the classes.

• How to choose these? 
- by “hand”
- some “automatic” technique

(sounds magical but this is goal of much statistics and machine learning; 
we will consider how automatically find features in this class)



Features

x̃1 : height-to-width ratio of object

x̃2 : some other feature



Features

x̃1 : height-to-width ratio of object
x̃2 : some other feature

� : ‘a’

⇥ : ‘b’



Features
� : ‘a’

⇥ : ‘b’

x̃1 only would lead to poor categorization
More features can be helpful:



Features

• If adding features improves performance, 
keep adding independent features?

• Will this continue to improve performance?

At some point, NO! Performance will get worse.
WHY?



A more familiar example: regression

• Instead of discrete categories (‘a’, ’b’), each 
datapoint (or data vector) maps to some value 
of a continuous variable (y). 

{(x1, y1), (x2, y2), · · · , (xN , yN )}



{(x1, y1), (x2, y2), · · · , (xN , yN )}

x1 independent variable

y1 response or dependent variable



Modeling as regression

{(x1, y1), (x2, y2), · · · , (xN , yN )}

What does it mean to model this data?

- Want to write y as some function of x
- Want to fit a function through x, y 
- Given x want to predict y



Regression: curve-fitting

{(x1, y1), (x2, y2), · · · , (xN , yN )}

free parameters: (w0, w1, · · · , wM )

ỹ(x) = w0 + w1x+ · · ·+ wMxM =
MX

j=0

wjx
j



Polynomial regression

• The larger M, the higher-degree the polynomial 
à more complex model/more features. 

• Expect fit to get better with increasing M. 
When M = N, then exact fit to all datapoints (b/c 
Mth order polynomial has M+1 parameters, M 
roots). 

• So are the more-complex models better? 



Parameters chosen to minimize some fit 
error

Common error function: sum-of-squares: 

(How to implement? Matlab: polyfit. Theory: we’ll get to it.)

(Is this the only choice? No. Best choice? Interesting q: we’ll get to it.)
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Predictability
• Error on fitting the specific training data keeps decreasing with 

model complexity (M).

• Error of fit to previously un-fit/unseen data improves but then 
worsens with increasing M.

• Model is overfitting to foibles of training data (noise) after M = 3. 

• Model becomes both more complex and less predictive beyond M = 
3 features. 

• Key technique: cross-validation. Test model on previously unseen 
data. Hold-out dataset or jack-knife/leave-one-out approaches. 

(There are other ways to improve predictability by reducing complexity, 
e.g. by directly constraining the complexity of the model: “regularization”) 



Back to categorization example

simplest intermediate most flexible/complex
exhibits overfitting



Better features: admit simpler model

poor choice of features

{x1, x2, · · · , xN} ! ‘a’

{x0
1, x

0
2, · · · , x0

N} ! ‘b’

better choice of features

(In regression example, data were generated from a sine wave. 
Using sines instead of polynomials would have produced an excellent 2-parameter fit.)



Summary: what is modeling?

• A good model can describe the data in a relatively 
simple/low-complexity/compact way (but not too 
low! Einstein: as simple as possible, but no 
simpler) and has good prediction performance.  

• Extracting “features” of data as a way to model it. 

• To determine predictability, important to cross-
validate models/fits. 


