
What is modeling?

NEU 466M
Spring 2020

NEURAL NETWORKS FOR PATTERN
RECOGNITION, CHRISOPHER BISHOP

Reference:

http://cs.du.edu/~mitchell/mario_books/Neural_Networks_for_Pattern_Recognition_-_Christopher_Bishop.pdf

What does modeling mean?

example of ‘a’ example of ‘b’

Pixels xi with values 1 or 0 (black or white).

What does modeling mean?

example of ‘a’ example of ‘b’

What is ‘a’-ness, versus ‘b’-ness?

Equivalent problem encountered by electrophysiologists

Categorize recorded spike as coming from neuron a or b

{x1, x2, · · · , xN} ! ‘a’

{x0
1, x

0
2, · · · , x0

N} ! ‘b’

figure from Quian Quiroga

What does modeling mean?

example of ‘a’ example of ‘b’

What is ‘a’-ness, versus ‘b’-ness?

Model: relationship between data and
its category

256⇥ 256 pixels : N = 65536

Store every image with its letter label?

{x1, x2, · · · , xN} ! ‘a’

{x0
1, x

0
2, · · · , x0

N} ! ‘b’

Model: store every possible image
with corresponding letter label?

256⇥ 256 pixels : N = 65536

{x1, x2, · · · , xN} ! ‘a’

{x0
1, x

0
2, · · · , x0

N} ! ‘b’

Number of 256⇥ 256 bw images: 265536 ⇠ 1020000

Atoms in universe: ⇠ 1080

Houston, we have a problem.

Storing each data, category pair

• Need too many examples/data to fill grid between
inputs to categories! “Curse of dimensionality”

• Too much data to store!

à Compactness

• Not predictive: What to do with new example?

à Generalizability

What we want from a model: compactness and
generalizability.

One solution: feature selection

• Look at some much smaller set of
characteristic features that define the classes.

• How to choose these?
- by “hand”
- some “automatic” technique

(sounds magical but this is goal of much statistics and machine learning;
we will consider how automatically find features in this class)

Features

x̃1 : height-to-width ratio of object

x̃2 : some other feature

Features

x̃1 : height-to-width ratio of object
x̃2 : some other feature

� : ‘a’

⇥ : ‘b’

Features
� : ‘a’

⇥ : ‘b’

x̃1 only would lead to poor categorization
More features can be helpful:

Features

• If adding features improves performance,
keep adding independent features?

• Will this continue to improve performance?

At some point, NO! Performance will get worse.
WHY?

A more familiar example: regression

• Instead of discrete categories (‘a’, ’b’), each
datapoint (or data vector) maps to some value
of a continuous variable (y).

{(x1, y1), (x2, y2), · · · , (xN , yN)}

{(x1, y1), (x2, y2), · · · , (xN , yN)}

x1 independent variable

y1 response or dependent variable

Modeling as regression

{(x1, y1), (x2, y2), · · · , (xN , yN)}

What does it mean to model this data?

- Want to write y as some function of x
- Want to fit a function through x, y
- Given x want to predict y

Regression: curve-fitting

{(x1, y1), (x2, y2), · · · , (xN , yN)}

free parameters: (w0, w1, · · · , wM)

ỹ(x) = w0 + w1x+ · · ·+ wMxM =
MX

j=0

wjx
j

Polynomial regression

• The larger M, the higher-degree the polynomial
à more complex model/more features.

• Expect fit to get better with increasing M.
When M = N, then exact fit to all datapoints (b/c
Mth order polynomial has M+1 parameters, M
roots).

• So are the more-complex models better?

Parameters chosen to minimize some fit
error

Common error function: sum-of-squares:

(How to implement? Matlab: polyfit. Theory: we’ll get to it.)

(Is this the only choice? No. Best choice? Interesting q: we’ll get to it.)

E =
1

2

NX

n=1

[ỹ(xn;w)� yn]
2

=
1

2

NX

n=1

[
MX

j=0

wjxj
n � yn]

2

=
1

2

NX

n=1

[w0 + w1xn � yn]
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Degree 1, squared error = 0.45126

Linear fit (M=1)

N = 11 datapoints
dashed = true fxn

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Degree 2, squared error = 0.45126

Quadratic (M=2)

N = 11 datapoints
dashed = true fxn

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Degree 3, squared error = 0.02289

Cubic

N = 11 datapoints
dashed = true fxn

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Degree 9, squared error = 0.0023272

M=9

N = 11 datapoints
dashed = true fxn

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ï0.4

ï0.2

0

0.2

0.4

0.6

0.8

1
Degree 11, squared error = 1.184eï20

M = 11

N = 11 datapoints
dashed = true fxn

x

y

1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sum-of-squares error
fit error on training/new data

M

sq
u
ar
ed

er
ro
r

Predictability
• Error on fitting the specific training data keeps decreasing with

model complexity (M).

• Error of fit to previously un-fit/unseen data improves but then
worsens with increasing M.

• Model is overfitting to foibles of training data (noise) after M = 3.

• Model becomes both more complex and less predictive beyond M =
3 features.

• Key technique: cross-validation. Test model on previously unseen
data. Hold-out dataset or jack-knife/leave-one-out approaches.

(There are other ways to improve predictability by reducing complexity,
e.g. by directly constraining the complexity of the model: “regularization”)

Back to categorization example

simplest intermediate most flexible/complex
exhibits overfitting

Better features: admit simpler model

poor choice of features

{x1, x2, · · · , xN} ! ‘a’

{x0
1, x

0
2, · · · , x0

N} ! ‘b’

better choice of features

(In regression example, data were generated from a sine wave.
Using sines instead of polynomials would have produced an excellent 2-parameter fit.)

Summary: what is modeling?

• A good model can describe the data in a relatively
simple/low-complexity/compact way (but not too
low! Einstein: as simple as possible, but no
simpler) and has good prediction performance.

• Extracting “features” of data as a way to model it.

• To determine predictability, important to cross-
validate models/fits.

