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When a stimulus supports two distinct interpretations, perception alter-
nates in an irregular manner between them. What causes the bistable
perceptual switches remains an open question. Most existing models
assume that switches arise from a slow fatiguing process, such as
adaptation or synaptic depression. We develop a new, attractor-based
framework in which alternations are induced by noise and are absent
without it. Our model goes beyond previous energy-based conceptual-
izations of perceptual bistability by constructing a neurally plausible
attractor model that is implemented in both firing rate mean-field and
spiking cell-based networks. The model accounts for known properties of
bistable perceptual phenomena, most notably the increase in alternation
rate with stimulation strength observed in binocular rivalry. Furthermore,
it makes a novel prediction about the effect of changing stimulus strength
on the activity levels of the dominant and suppressed neural populations,
a prediction that could be tested with functional MRI or electrophysio-
logical recordings. The neural architecture derived from the energy-based
model readily generalizes to several competing populations, providing a
natural extension for multistability phenomena.

I N T R O D U C T I O N

When observers are presented with an ambiguous stimulus
that has two distinct interpretations, their perception alternates
over time between the different possible percepts in an irreg-
ular manner, a phenomenon known as perceptual bistability.
Bistability arises in many domains of perception: ambiguous
figures (Necker 1832), figure–ground segregation (Rubin
1921), ambiguous motion displays (Hupé and Rubin 2003),
auditory segmentation (Pressnitzer and Hupé 2006), and—the
domain that has been studied most extensively—binocular
rivalry (Blake 1989, 2001; Levelt 1968; Logothetis 1998; Tong
2001; Wheatstone 1838). In addition to generating much ex-
perimental work, binocular rivalry has attracted much attention
theoretically, and many models have been proposed for it
(Bialek and DeWeese 1995; Blake 1989; Dayan 1998; Free-
man 2005; Laing and Chow 2002; Lehky 1988; Lumer 1998;
Wilson 2003). Although there are fewer quantitative studies of
other bistable perceptual phenomena, there is evidence that
they share many properties of binocular rivalry alternations
(Rubin and Hupé 2004; van Ee 2005). Thus models of binoc-
ular rivalry may be generalized to other bistable perceptual
phenomena.

Although the alternations seem haphazard, for a fixed stim-
ulus the durations are drawn from a stationary distribution that
resembles a skewed Gaussian, typically fit by a gamma or

log-normal function (e.g., Lehky 1995; Levelt 1968; Rubin and
Hupé 2004). Importantly, alternations occur not only when the
two percepts are balanced in strength (equal mean dominance
durations), but also when one is significantly stronger than the
other. When stimulus parameters that affect the relative
strength of the two interpretations are varied continuously, the
relative time spent perceiving each changes gradually (Hupé
and Rubin 2003; Levelt 1968). In the domain of binocular
rivalry, where the strength of each competing percept can be
manipulated independently (e.g., by the contrast of the mon-
ocular images), two additional important observations were
summarized by Levelt (1968). His “Proposition II” states that
the imbalance in dominance time caused by weakening only
one image (while keeping the other fixed) occurs mainly
through an increase of the mean dominance duration of the
other (unchanged) image, with little or no effect on the dom-
inance durations of the manipulated one. (Note that this is a
statement about absolute mean durations; the fractions of
dominance time of each percept obviously both change be-
cause they must add up to one.) Levelt’s “Proposition IV”
states that when the monocular images are strengthened simul-
taneously, the mean durations of both eyes decrease (i.e., the
rate of alternations increases, although the fraction of time
spent perceiving each image remains unchanged).

What causes the alternations? Although this is a central
question about perceptual bistability, the mechanisms underly-
ing the perceptual switches are not well understood. In most
current models alternations between dominance of two or more
competing neuronal populations arise from some form of slow
adaptation acting on the dominant population, either in its
firing rate or in its synaptic output (synaptic depression) or
both, which leads to a switch in dominance to the competing
population (Kalarickal and Marshall 2000; Lago-Fernandez
and Deco 2002; Laing and Chow 2002; Lehky 1988; Matsuoka
1984; Stollenwerk and Bode 2003; Wilson 2003). In the
absence of noise or finite-sized induced fluctuations, models in
which switches are caused by adaptation generate alternations
with perfect periodicity; we therefore term them oscillator
models. Importantly, in such models noise is assumed to be an
inessential (albeit experimentally inevitable) component of the
perceptual alternations.

An alternative possibility is that the main cause of perceptual
switching is noise—external, internal, or both. Noise, in the
form of unavoidable perturbations, is ubiquitous in the brain at
multiple scales, from vesicular release and spiking variability
to fluctuations in global neurotransmitter levels. Furthermore,
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external noise can cause perceptual alternations (cf. Kanai et al.
2005; Lankheet 2006) as can some internally generated noise
(e.g., blinks). This raises the possibility that noise is the
primary cause for alternations. In this scheme, dominance of
each of the competing percepts can be viewed as a stable state
of the neuronal dynamics (i.e., attractor; Hertz et al. 1991),
with noise causing the system to alternate between them. We
therefore term these noise-driven attractor models. (Additional
involvement of neural adaptation may still be present, but in
this scheme it would not play the primary role and would not
lead to alternations in the absence of noise.) Attractor models
make a fundamentally different prediction than do oscillator
models about the consequence of eliminating noise from the
system: rather than showing perfectly periodic alternations,
they predict that the perceptual alternations would cease—i.e.,
the system would settle down in one of the two percepts and
stay there indefinitely. Although this is a thought experiment
that cannot be performed practically, exploring the distinction
between the two alternatives theoretically is important for our
understanding of the underlying mechanisms.

Herein we present an attractor-based framework in which
alternations are induced by noise and are absent without it. The
proposal that bistable transitions may be mediated by noise has
been made before (e.g., Brascamp et al. 2006; Freeman 2005;
Haken 1994; Kim et al. 2006; Lankheet 2006; Riani and
Simonotto 1994; Salinas 2003). Our work goes beyond previ-
ous models of noise-driven bistability by constructing a neu-
rally plausible attractor model that produces behaviors consis-
tent with the experimental findings summarized earlier. A
particular challenge is posed by Proposition II introduced by
Levelt (1968) because it implies that increasing input strength
to one attractor reduces the energy barrier for the other attractor
(Kim et al. 2006), and such behavior does not arise in com-
monly used energy functions (see, e.g., Hertz et al. 1991). We
therefore start by formulating a simple two-well energy func-
tion that includes coupling between the input strength to one
attractor and the energy barrier of the other. We then derive
from the energy function dynamical equations of a rate-based
(mean-field) model. The equations suggest a novel network
architecture, where information about the input strength of
each percept is sent not only to the population representing it
but also to the population representing the competing percept.
This, in turn, leads to the novel prediction that increasing
stimulus strength to one population will reduce the activity
level of the competing population by recruiting more inhibition
while it is dominant. Finally, we show that the model can also
be realized in a spiking neuronal attractor network, using the
neuronal architecture derived for the rate-based model, thus
providing a more realistic description of the neuronal dynamics
during perceptual bistability.

R E S U L T S

We start by positing that each of two neuronal populations,
labeled A and B, represent a different possible interpretation of
the stimulus. The neural correlate of competition for perceptual
dominance is a competition between these populations for
higher activity. The activities of the populations are described
by their mean firing rates, rA and rB. We denote by Aon and Bon
the states of dominance of populations A (rA �� rB) and B
(rB �� rA), respectively.

Hypothesizing noise-driven alternations means a fundamen-
tally different structure of the trajectories in state space (the
space of neuronal activities). This is illustrated in the left and
right panels in Fig. 1A, which visualize on the plane of
population firing rates (rA, rB) the evolution of the two models
over time. (Time is not explicit in this representation: rather,
points along the trajectory correspond to snapshots of the state
of the system at regular time intervals.) In both oscillator and
noise-driven attractor models, perceptual alternations corre-
spond to alternations between points Aon and Bon. However, the
trajectories in state space that move the system between these
states are fundamentally different in the two cases. In oscillator
models (Fig. 1A, left), the alternations follow a cyclic trajectory
in the plane (rA, rB), caused by the deterministic effect of the
slow negative feedback provided by the adaptation. Thus the
system is characterized by a limit cycle, with a large proportion
of the time spent around Aon and Bon. In contrast, in our
noise-driven model (Fig. 1A, right) Aon and Bon are stable fixed
points, or attractors, like those obtained from a stimulus that
activates only one of the populations (e.g., by turning off one
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FIG. 1. Oscillator vs. attractor models for bistability. A, left: in oscillator
models, slow negative feedback (spike frequency adaptation or synaptic
depression) produces periodic alternations between 2 states, Aon and Bon, seen
as a closed trajectory on the plane of the population rates (rA, rB). Right: in
attractor models, 2 possible steady states coexist, Aon and Bon. When the
system is initialized in one or the other side of the separatrix (diagonal), it
evolves and settles down in the closest attractor state. B: diagonally oriented
panel shows the behavior of attractor models. Without noise, the system does
not alternate; rather, trajectories lie on either side of the separatrix (dashed line)
and approach one of the 2 states (attractors). In the presence of noise,
alternations are produced. Time course of the difference between the 2
population firing rates, �r(t) � rA � rB, is represented by the projection of a
true random trajectory in the (rA, rB) plane onto a diagonal joining the points
Aon and Bon (middle). Bottom left: energy function underlying the dynamics of
�r(t), which consists of 2 minima at Aon and Bon, and a local maximum at zero.
C: distribution of dominance durations for the attractor model with equal input
strengths.
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of the monocular images in binocular rivalry). All trajectories
in state space approach either Aon or Bon, depending on which
side of the diagonal (separatrix) they originate from. The
alternations between the two stable states are attributed to noise
that occasionally allows the system to overcome the energy
barrier between them. In the presence of noise, dominance
alternates over time as the system visits the states Aon and Bon
in turn (Fig. 1, center plot, oriented diagonally). In the absence
of noise, the system would flow into one of the stable states
(depending on initial conditions) and stay there indefinitely.

Because bistable perceptual alternations are not regular, but
rather appear stochastic, many oscillatory models also assume
a role for noise (Kalarickal and Marshall 2000; Lago-Fernan-
dez and Deco 2002; Lehky 1988; another proposal is that the
irregularity of alternations arises from finite-size effects; Laing
and Chow 2002). It is therefore important to sharpen and
clarify the distinction we make between two types of models,
and the two panels in Fig. 1A are particularly useful for that.

We use the term “noise-driven attractor model” to refer to
any system where the points Aon and Bon in state space are
stable fixed points, i.e., a system that will not undergo alter-
nations between these states in the absence of noise. Such a
system may or may not also contain adaptation, as long as the
adaptation is not strong enough to drive alternations by itself
(i.e., when noise is eliminated). Indeed, as will be seen later, in
our model we use weak adaptation to adjust the form of the
distributions of dominance durations so that they resemble
those observed experimentally. However, because this adapta-
tion is too weak to drive alternations when noise is eliminated,
its inclusion does not change the noise-driven nature of the
model.

Conversely, by “oscillatory model” we refer to one where
the points Aon and Bon are not stable fixed points, but rather
belong to a limit cycle that is the only stable state (when both
populations A and B are stimulated). Such a system may or
may not also contain noise (e.g., to introduce jitter in the
dominance durations) so long as the noise does not destroy the
stable limit cycle. (One may construct more complex systems
where state space changes over time from having attractors to
oscillatory stable states; such systems would not fall into either
preceding category and we do not study them here.)

A one-variable energy model for bistability

The two-attractor structure of state space proposed in Fig.
1A (right) naturally leads to a description by an energy function
with two local minima, corresponding to Aon and Bon, and a
barrier corresponding to the separatrix (Fig. 1B). We therefore
first sought to find an energy-based formalism to describe the
dynamics of perceptual alternations. This formulation will later
shed light on how to build more realistic rate-based and spiking
neural networks. The observations summarized by Levelt
(1968) about the effect of stimulation strengths on the mean
dominance durations of each percept present an important
challenge in the construction of an energy function. A simplis-
tic extension of commonly used energy functions would pro-
duce a system where increasing the input strength to percept A
would deepen its own minimum. This would make it harder for
the system to escape from A, which in turn would increase its
mean dominance durations. This is at odds with Levelt’s
Proposition II, which states that the main effect of increasing

the input strength to A is a decrease in the mean dominance
duration of B. As observed by Kim et al. (2006), the latter
behavior implies that an increase of the input to A has the
effect of heightening the energy barrier of the population
representing percept B (Fig. 2A, right). Similarly, Proposition
IV (alternation rate grows as both stimuli are strengthened)
implies that increasing both inputs lowers—not heightens—the
energy barrier (Fig. 2A, left). A simple energy function that has
these two properties is

E��r� � �r2��r2 � 2� � gA��r � 1�2 � gB��r � 1�2 (1)

where the single variable �r � rA � rB is the difference
between the firing rates of the two competing populations and
gA and gB are their input strengths. The minima are located
close to �r � �1 (states Aon and Bon, respectively; for
simplicity, the firing rates are dimensionless here). The first
term of the energy function ensures that there are two local
minima for small values of the stimulus strengths. The next
two quadratic terms are proportional to the stimulation
strengths; each increases the energy of the competing mini-
mum without changing its own minimum energy.

For a model based on an energy function the dynamic
variable satisfies d�r/dt � ���1dE(�r)/d�r. This means that
the dependent variable �r moves along the horizontal axis of
the energy function (Fig. 2A) toward the location of the closest
minimum with a velocity proportional to the slope of the
function. Because the slope of the energy function is zero at the
minima, those points are fixed points of the dynamics. In
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FIG. 2. The bistable energy model produces Levelt propositions II and IV.
A: energy functions when both stimuli are strengthened simultaneously, gA �
gB (left), and when gA is kept fixed and gB is varied (right). Energy wells
change with gB as indicated by the arrows. B: mean dominance durations for
states Aon and Bon, denoted TA and TB, respectively, when the stimulation
strengths vary simultaneously (left; Levelt’s proposition IV) and when only gB

is varied (right; Levelt’s proposition II). Full lines are for the one variable
model in Eq. 2. Dashed lines are for the 2-variable rate-based model. Right: gA

is kept fixed at 0.1 and 0.05 for the one- and 2-variable models, respectively.
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addition to the deterministic rule specified earlier, we introduce
a noise source to allow random transitions between the min-
ima. The time evolution is therefore given by

�
d

dt
��r� � �4�r��r2 � 1� � 2gA��r � 1� � 2gB��r � 1� � n�t� (2)

Here � (set to 10 ms in the subsequent simulations) is the
timescale in which �r changes and n(t) is a colored Gaussian
noise (see Eq. A1, APPENDIX A). Because perception of stimulus
A happens whenever the firing rate of population A is higher
than that for population B (rA � rB), an alternation occurs when
the variable �r crosses zero. This dynamics generates trajec-
tories that linger for a short while around one of the fixed
points and then move to the other (Fig. 1B, middle, oriented
diagonally).

When alternations between two states are driven purely by
noise, the lifetimes of each state are distributed exponentially
(Kramers 1940). With refractory period or other biophysical
constraints, the distribution of dominance durations is nearly
exponential, with the peak determined by the timescale of the
noise (e.g., Kramers 1940; van Kampen 2001). As can be seen
in Fig. 1C, this is also the case for the model as formulated in
Eq. 2, where the peak of the distribution of dominance dura-
tions is at the timescale of the noise we used, approximately
100 ms. This is very far from experimentally observed distri-
butions, which typically peak at timescales of seconds and
have a shape resembling a skewed Gaussian (Lehky 1995;
Levelt 1968). One may propose to address this by assuming
that perceptual alternations are driven by noise sources that act
at a slower timescale, of seconds (e.g., originating from en-
dogenous attention modulations and/or global neurotransmitter
levels). This approach is limited, however: while it can cer-
tainly lengthen the dominance durations, it is not sufficient to
fit the shape of their distributions (see following text, Fig. 7).
We therefore favor another approach, which can yield both
realistic means and shape of distributions of dominance dura-
tions. We propose that biophysical noise sources characterized
by fast timescales (�100 ms) do play a major role in causing
alternations. However, unlike in the simple model of Eq. 2, we
suggest that in reality there are additional mechanisms that
effectively reduce the probability that the system leaves an
attractor right after it has settled into it, compared with the
probability of later transitions. There is independent evidence
for the existence of such “short-term persistence” mechanisms
(see DISCUSSION and Leopold et al. 2002), but their precise
nature is not well understood. In the model presented in the
following sections, we achieve this tendency by adding a weak
adaptation current. The initial activity level of the dominant
population (i.e., immediately after transitions) will be too high
for the noise to push the system to the competing state. Over
time, however, the weak adaptation will bring the activity to a
slightly lower level, comparable to that of the noise amplitude,
so that the probability of transition will increase. Importantly,
however, in our model adaptation alone (i.e., without noise)
will not be enough to cause alternations, i.e., they will still be
noise driven. In terms of the state-space and the energy land-
scape (Fig. 2), the effect of adaptation will be to add a slow,
time-dependent forcing that effectively reduces the depth of the
minimum associated with the dominant percept over time.
However, the adaptation will be too weak to destroy the energy

minima (i.e., to destabilize the states Aon and Bon), and there-
fore noise will still be crucial for dominance switches.

The mean dominance durations of each attractor state, cal-
culated from simulations of Eq. 2 for different input strengths,
show that the system indeed satisfies Levelt’s propositions
(Fig. 2B, solid lines). This is a direct consequence of our choice
of energy function, specifically the dependence of the height of
energy barriers on input strength. This dependence arises from
the two terms where the input strengths (gA and gB) are
multiplied with the state variable (�r). Although the effect of
gB on TA is much larger than that on TB (Fig. 2B, right), the
effect on TB is not negligible. This is because, although
increasing gB greatly reduces the energy barrier for Aon, it also
slightly increases the barrier for Bon. This behavior is consis-
tent with experimental results (Brascamp et al. 2006). In the
next section we will see that the coupling between the input
strength to one population and the energy barrier of the other,
posited to obtain the experimentally observed dependencies of
mean dominance durations on stimulus strength, motivates a
novel network architecture and leads to novel predictions about
the levels of activity of the neural populations.

Derivation of a rate-based model and network architecture

In this section we construct a rate-based network model
based on the energy description of Eq. 1. We first extend Eq.
1 to a two-variable energy function (Eq. B1, APPENDIX B). This
energy describes the dynamics of two populations, A and B,
through their firing rates rA and rB. We then derive from the
two-variable energy function two coupled differential equa-
tions describing the dynamics of the two populations’ firing
rates in the presence of noise (Eq. B4).

The dynamics equations determine the time evolution of the
firing rates of the two populations and can be interpreted as
originating from an underlying neural network. Indeed, the
neural populations in the architecture presented in Fig. 3A obey
the dynamics derived from the two-population energy function.
Each population has recurrent excitation and each inhibits the
other through direct cross-connections. (Although the sche-
matic indicates that both excitation and inhibition emanate
from a single population, this connectivity could be achieved
with excitatory and inhibitory subpopulations; not shown.) The
network shares a basic feature with many other models of
bistability: to ensure that only one population is active at any
time (“mutual exclusivity”; Leopold and Logothetis 1999;
Rubin 2003), mutual inhibition is exerted between the two
populations (Blake 1989; Laing and Chow 2002; Wilson
2003). Our model, differing from some others, requires strong
recurrent excitatory connections to produce robust winner-
take-all behavior for relatively weak inputs. However, for very
weak inputs a single low-activity resting state is the only
attractor.

A novel feature of the model that is clearly visible in the
architecture is that the local inhibitory subpopulations (small
circles in Fig. 3A) are driven by the total external stimulation.
A crucial point here is that the external input to these subpopu-
lations constitutes not only a copy of the external input to
“their” excitatory population, but also the input sent to the
competing population (e.g., to the other eye). Moreover, the
rate-based equations (Eq. B4) require that this total external
input be gated by the activity level of the corresponding
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excitatory population, so that each recurrent population k (k �
A, B) receives back inhibition equaling (gA 	 gB)rk. This
feature is a consequence of the multiplicative terms gk(�r �
1)2 in the one-variable energy function (Eq. 1). Recall that
those terms were required to make the model behave in
accordance with propositions II and IV of Levelt (1968).
Inspection of Eq. B4 now sheds light on how the multiplicative
terms give rise to these behaviors. Increasing the input to one
population, say A, results in stronger inhibition to it when it is
dominant (i.e., when rA � 1) and also in stronger inhibition to
population B when the latter is dominant (i.e., when rB � 1).
At the same time, the increase of gA also provides additional
excitatory input to population A, and therefore the total input to
it remains largely unaffected when it is dominant. In contrast,
population B does not enjoy stronger excitatory input from the
increase in gA, and therefore its total input, although dominant,
is reduced by an amount �gArB. Consequently, the mean
dominance duration of B is reduced because less noise is now
required to kick it out of dominance; meanwhile, the mean
dominance duration of population A remains nearly unchanged
(Levelt’s proposition II) because there is not much change to
its total input while dominant. This argument does not apply
when the input to A is so large that state Bon is close to
disappearing and Aon becomes the only stable state of the
system (see last subsection in RESULTS). Similarly, simultaneous
increases of the input strength to both populations cause
enhanced inhibition to both during dominance, and therefore
an increase in alternations rate (Levelt’s proposition IV). As
for the question how the multiplicative terms (gA 	 gB)rk may
be implemented, they can be realized in a biophysically plau-
sible way by a nonlinear input–output transfer function for the
neurons of the inhibitory subpopulations (see, e.g., the qua-
dratic function in the next version of the model, Eqs. B5–B7).

Finally, we modify the architecture to achieve more plausi-
ble generalization to perceptual multistability, i.e., when the
number of competing percepts N is �2 (Rubin 2003; Suzuki
and Grabowecky 2002). A simplistic generalization of the
architecture in Fig. 3A would require each of the N populations

to send direct inhibitory connections to all other populations,
causing the number of connections to grow as N2 and implying
that each population needs to have knowledge of all its poten-
tial competitors. These problems are solved by the alternative
architecture shown in Fig. 3B, which consists of a common
neural pool that is driven by all of the external inputs, and
sends by excitatory connections information about the total
summed input to all of the local inhibitory subpopulations,
which in turn inhibit their respective excitatory populations as
discussed earlier. This eliminates the need for direct connec-
tions between the neural populations representing the different
percepts and reduces the number of required connections from
O(N2) to O(N).

Dynamics of the noise-driven rate-based model and the role
of weak adaptation

We have simulated a two-population rate-based model using
the architecture in Fig. 3B with the addition of weak adaptation
currents (for details see APPENDIX B, second section). Figure 4
presents time courses for the relevant dynamical variables of an
excitatory neuronal population that undergoes an alternation
from the suppressed to the dominance state and back to the
suppressed state. Traces are shown for two different condi-
tions: weak (gray) and strong (black) stimulation. [Equal stim-
ulation was applied to the two populations in each case; to
facilitate direct comparison between the two conditions, we
used the same noise n(t) for both simulations.]

We first use Fig. 4 to further explain the effect of the weak
adaptation in our model because it is fundamentally different
from that in oscillatory models. The dashed curved traces in
Fig. 4, A and B show the activity level of the dominant
population and of the total input to it, respectively. A slight
decline over time is clearly evident in the noise-free system,
but it also exists for the mean activity and mean total input in
the presence of noise. This decline is caused by the gradual
increase of the adaptation current (Fig. 4D; the adaptation does
not exhibit rapid fluctuations because it integrates the activity

A B

Inh. pop’s

Exc. pop’s

Exc. pool

gA gB

Excitatory

Inhibitory

A B

Inh. pop’s

Sel. pop’s

gA gB

A B

C

gC

FIG. 3. Architectures of network models for bistability. A: 2 recurrent neuronal populations that represent percepts A and B mutually inhibit each other
directly. A prominent feature of this architecture is that separate local inhibitory subpopulations relay information about the total strength of external stimulation,
gA 	 gB. B: for the architecture to generalize to multistability (between more than 2 competing percepts; here A, B, and C are shown), an excitatory pool is
included that provides information about the total external stimulation to all local inhibitory subpopulations. This network does not require direct mutual
inhibition between the competing populations because inhibition is delivered to them indirectly by feedback through the global excitatory pool.
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slowly; cf. Eq. B5). Because the total input to the excitatory
population is given by

Total Input � Recurrent Excitation � Inhibition

� Adaptation Current 	 Stimulus 	 Noise

(cf. Eq. B5), its mean decreases as the adaptation current
increases over time. Note, however, that the asymptotic value
of the total input is well above the transition threshold of the
system (horizontal line in Fig. 4B). The adaptation is therefore
not sufficient to drive dominance switches by itself. Instead,
transitions occur by chance, when noise-evoked fluctuations
bring the total input below the threshold. Thus if noise is
removed from the model, the system would never show alter-
nations. This noise-driven switching mechanism is fundamen-
tally different from what happens in oscillator models: in those,
the adaptation is taken to be strong enough to cause switching
in dominance by reducing the total input below the transition
threshold, even in the absence of noise.

Although the weak adaptation does not drive alternations in
our model, it serves another important purpose: it provides a
mechanism to make the probability of transition time depen-
dent. Because the mean and the amplitude of the fluctuations in
our model do not change over time, without adaptation the
probability that the noise would cause the total input to dip
below threshold would have been constant in time. This, in
turn, would have yielded exponential-like distributions of dom-
inance durations, peaking at the timescale of the noise (recall
that without weak adaptation brief dominance durations of
�100 ms are much more likely to occur; Fig. 1C). The weak
adaptation provides a time-varying mean input that disfavors
early transitions in comparison with later transitions, thus
providing a form of “short-term persistence.”

In terms of the energy landscape (Fig. 2), the weak adapta-
tion can be thought of as causing slow changes in the shapes of
the energy wells around Aon and Bon and the energy barrier
between them (but without completely destabilizing the two
attractors). Specifically, over time there is a decrease in size of
the basin of attraction associated with the dominant percept,

together with a shift of the separatrix (approximately the peak
of the energy barrier) toward the same attractor. Figure 5
provides an example of an individual trajectory of the system,
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FIG. 4. Dynamical properties of the 2-vari-
able rate-based model. Time courses of dynam-
ical variables of an excitatory neural population
in Eqs. B5–B7. The population undergoes tran-
sitions between suppressed and dominant states.
During dominance, its activity (A) and total
input (B) are lower for strong stimulation
(gA,B � 0.05, black curves) than for weak stim-
ulation (gA,B � 0.01, gray curves). This reduc-
tion occurs due to stronger inhibition (C). Adap-
tation current (D) is affected by stimulus
strength the same way as the activity. Horizon-
tal line in B corresponds to the threshold (� �
0.1) of the input–output transfer function of the
excitatory neurons (Eq. B5). For the low-stim-
ulation case, the dashed curves are the rate (A)
and the total input (B); they correspond to the
attractor’s asymptotic or steady-state values for
activity (A) and total current (B) in the absence
of noise and given the instantaneous level of
adaptation. Notice that this asymptotic level is
well above the transition threshold (horizontal
line) of the system. Identical external noise was
used for the simulation in the 2 cases.
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FIG. 5. Adaptation alone, in a noise-free network, does not produce alter-
nations. Smooth trajectory in the (rA, rB) phase plane starts from the initial
point Bon and evolves to a steady-state point, marked by “✕ ”; the trajectory
does not reach the separatrix (diagonal line t1) and therefore no alternation
occurs. When noise is added, the trajectory (wiggly curve) wanders around Bon

passing through the points t1, t2; at the same time the separatrix is drifting
leftward (due to adaptation). Strong adaptation would have led to a transition
even in the absence of noise. However, in our model the adaptation is weak and
the separatrix remains far from Bon. Therefore a large noise fluctuation is
needed to cross it; once this occurs, around point t3, a switching to state Aon

occurs; the switch occurs very rapidly and therefore the trajectory looks
smooth during the transition. This geometrical representation illustrates that, to
induce a switch to dominance in A, perturbations that are orthogonal to the
separatrix are more effective, i.e., perturbations that increase rA and reduce rB

simultaneously (see also Fig. 6B). Value of the stimulation was equal for both
populations (g � 0.1).
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illustrating a transition from Bon to Aon on the plane (rA, rB), the
change in the location of the seperatrix over time, and the
absence of transition without noise.

Returning to Fig. 4, we next examine it to gain further
understanding of the dependence of dominance durations on
stimulation strength. During dominance, the activity level and
the total input (Fig. 4, A and B, respectively) are both slightly
higher in the weak stimulation condition (gray traces) than in
the strong stimulation condition (black traces). This, in turn,
results from a higher inhibition when the competing stimulus is
stronger (Fig. 4C). As a result, the total input during domi-
nance is closer to the threshold for stronger competing stimuli,
so that transitions tend to occur sooner, in accordance with
Levelt’s propositions II and IV. The dotted lines in Fig. 2B
confirm that the rate-based model indeed obeys these proposi-
tions over a wide range of stimulus strengths. For weak enough
inputs, alternation behavior gives way to quiescence: the bist-
able attractor states disappear and a single (resting) low-
activity attractor state for both populations is the only available
firing pattern. The transition regime between the alternation
mode (Aon or Bon) and quiescence is sharp, and it is character-
ized by the presence of random sequencing between three
states: Aon alone, Bon alone, and the resting state. For weak
inputs, the resting state dominates most of the time, whereas
for less weak inputs the Aon and Bon states alternate. Although
sharp, the transition regime is continuous, with the resting state
occupying an increasing fraction of time as the stimulus
strength decreases. One may interpret this continuous transi-

tion as corresponding to the stimulus detection threshold. For
very large input strengths, the system can oscillate even with-
out noise because of the presence of weak adaptation; for yet
stronger stimuli, steady coactivity of the two populations
occurs (the latter is also observed in adaptation-based models;
Shpiro et al. 2007). However, such large inputs are not likely
to be experienced in reality because of gain control mecha-
nisms that operate at multiple levels of sensory processing. The
existence of a large range in which a winner-take-all regime is
present between the low- and high-input strength regimes is
controlled by the strength of the recurrent connections of the
excitatory populations. We have established a set of conditions
for the network connectivity parameters that approximately
determine when the attractor states exist (APPENDIX B, third
section).

To further examine the effect of noise on dominance tran-
sitions we calculated averages of the time courses of input
noise synchronized to specific transition events [“switch-trig-
gered-averages” (STAs)]. The solid curve in Fig. 6A shows the
STA for transitions from suppressed to dominant states of one
population (arbitrarily chosen) and the dashed curve shows the
STA for the reverse transitions of the same population. The
curves indicate that transitions tend to occur when there are
simultaneous increases in input noise to the population switch-
ing to dominance and decreases in input noise to the population
becoming suppressed. (Note that the transitions occur with a
short delay after the coincidental noise fluctuations in the two
populations, reflecting the neuronal integration timescale.) Fig-

5.005.0-

-0.03

0

0.03

Time to Switch (s)

A

B

esion
A
,B

-5 -4 -3 -2 -1 0 1 2

-0.03

0

0.03

Time to Swith (s)

esion
B,

A

C

-0.12 -0.06 0 0.06 0.12

-0.06

0

0.06

0.12

noise
A

esion
B

FIG. 6. Noise directly drives alternations in the rate-based model. A: switch-triggered averages (STAs) of time courses of the input noise n(t), time locked
to network transition events. Solid curve is for transitions from the suppressed to the dominant state; the dashed curve is for the reverse. Switches are associated
with simultaneous occurrence of lower-than-average noise to the dominant population and higher-than-average noise to the suppressed population. B: values of
the noise input at moments of a transition (t � 0 in A) when population A becomes dominant (dots) or suppressed (crosses). This plot illustrates that individual
switching events (say, termination of A’s dominance, crosses) occur primarily during simultaneous negative fluctuations in nA(t) and positive fluctuations in nB(t).
Clouds of points are oval rather than circular, indicating that population A can become suppressed even if it experiences a positive fluctuation, as long as
population B simultaneously receives a large enough transient positive input. C: comparison with Lankheet’s (2006) experimental STAs. Timescale of the noise
in the model was lengthened (500- instead of the 100-ms timescale used previously) to match the slowly filtered noisy inputs used in the experiment. STAs (solid
lines) show sharp positive and negative peaks just before the transition, which are preceded by wider and shallower opposite peaks. The presence of the latter
peaks was not due to the interaction between the timescale of the noise and the long timescale of the adaptation: the same simulation with no adaptation
reproduced the shallow peaks (dashed lines; to keep the mean dominance durations at about 4 s, the strength of the noise was increased from � � 0.03 to � � 0.05).

1131ATTRACTOR NETWORK MODEL OF PERCEPTUAL BISTABILITY

J Neurophysiol • VOL 98 • SEPTEMBER 2007 • www.jn.org

 on S
eptem

ber 10, 2007 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


ure 6B shows that this tendency holds for individual transi-
tions, not just for averages. Each point in the figure represents
the values of the input noise to population A against that of
population B at moments of transition. In spite of the variabil-
ity in the noise values at individual transition events, there is a
clear and an almost complete separation between the two
clouds, with the dot symbols, indicating transitions of popula-
tion A from suppressed to dominant, clustering in the bottom
right quadrant (i.e., when nA � 0 and nB 
 0), and the cross
symbols, indicating the opposite transitions, clustering in the
opposite quadrant. Furthermore, the clouds of points are elon-
gated with slope near one, suggesting that a stronger-than-
average positive fluctuation in the input to A can push it to
dominance even if B receives a weaker-than-average negative
fluctuation, and vice versa.

Recently, Lankheet (2006) conducted an experiment to test
the effect of modulations in the external (stimulus) noise on
perceptual transitions. Two random-dot kinematograms with
different directions of motion were used as competing stimuli
in a binocular rivalry paradigm. The coherence levels were
modulated in a pseudorandom fashion as observers continually
indicated their percept. Lankheet then calculated the STAs of
the coherence in the two stimuli. STAs associated with transi-
tions from suppression to dominance of an eye showed a peak
just before the transition and those of the other eye show a
negative (if weaker) peak. The experimental STAs resemble
our simulated STAs in Fig. 6A. At the same time, there are a
few notable differences between Lankheet’s results and the
STAs shown in Fig. 6A. First, only one of Lankheet’s subjects
showed a negative peak in the STAs of the transitions from
dominance to suppression, whereas the STAs produced by our
model show positive and negative peaks of approximately the
same height. Dissimilar heights can be obtained in a slightly
modified version of our model, too, by injecting the noise
directly into the inputs of all populations that receive external
stimulation, rather than as a perturbation to the excitatory
populations only (not shown), which is more similar to the
Lankheet (2006) paradigm of perturbing the external stimuli.
Second, some of Lankheet’s subjects showed wide and shallow
peaks in their STAs several seconds before the narrow peaks
immediately preceding the transition, which are not observed
in our simulations. To mimic the experimental observations,
we ran a simulation with a noise timescale of 500 ms as that
used in the experiment (instead of the much shorter 100-ms
timescale used to compute the STAs in Fig. 6A). The new
STAs resemble those found experimentally, including the pres-
ence of wide and shallow peaks preceding the sharp peaks right
before transitions (Fig. 6C, solid lines). Using simulation
results of a competition model, Lankheet (2006) interpreted the
shallow peaks as the consequence of firing rate adaptation.
However, even after we removed adaptation from our model
altogether (and increased the noise level so that the alternation
rate is kept constant, around 0.25 Hz), the shallow peaks did
not disappear (Fig. 6C, dashed lines). This suggests that adap-
tation is not necessary to produce those peaks.

The interplay between noise and adaptation levels and its
effect on the distribution of dominance durations

With appropriate choice of the amplitudes of noise and
adaptation current, the rate-based Eq. 2 produces noise-driven

switches whose distribution of dominance durations (Fig. 7A)
agrees with those typically observed during rivalry, being well
fit by gamma or log-normal functions (Lehky 1988; Levelt
1968). The timescale and amplitude of both noise and adapta-
tion affect the shape of the distributions. Figure 7B presents the
distributions obtained for two other conditions, stronger and
weaker adaptation (dashed and dotted lines, respectively; con-
ditions were compared with the mean dominance durations
kept approximately constant, which means that as adaptation
strength was increased, the noise amplitude was reduced ac-
cordingly.) When adaptation is strong, alternations are domi-
nated by the dynamics of this outward current, making the
durations less variable. The distribution becomes narrower and
symmetrical around the mean dominance duration (Fig. 7B,
thin solid curve). The limiting case of strengthening adaptation
(relative to noise amplitude) produces a noise-free oscillatory
system; i.e., the distribution of dominance durations becomes a
delta function (not shown). At the other extreme, when adap-
tation is removed altogether, the distribution becomes severely
skewed with its peak shifted down to a value closer to the
timescale of the noise (100 ms in our case). These results
indicate that to obtain realistic distributions of dominance
durations adaptation should be present, but weak. Importantly,
the values of adaptation and noise in our model that produce
realistic distributions are such that adaptation cannot generate
switches by itself, i.e., when noise is removed from the system.
In the presence of adaptation there should be correlations
between the durations of consecutive percepts, but because in
our model the adaptation is weak, correlations are small (not
shown), in accordance with experimental evidence (Fox and
Herrmann 1967; Rubin and Hupé 2004). Nevertheless, the role
of adaptation is important and twofold. It produces a time-
dependent probability of transitions that gives realistic distri-
butions of dominance durations. Also, adaptation’s slow time-
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FIG. 7. A combination of strong noise and weak adaptation provides a fit to
experimental duration distributions. A: distribution of dominance durations
resulting from the 2-variable rate-based model (thick line) is plotted along with
log-normal (thin line) and gamma (dashed line) fits (see APPENDIX D for more
details). B: distributions for 3 different amplitudes of adaptation, � � 0.2
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scale in companion with the noise amplitude sets the timescale
(seconds) of alternations.

Bistability and alternations in a spiking neural
attractor network

In this section we present results from simulations of a
cell-based network with spiking neurons based on the rate
model presented above (see APPENDIX C). The architecture was
like that in Fig. 3B (without population C), with 100 neurons
per population. We used leaky integrate-and-fire neurons with
weak adaptation currents (to obtain dominance durations con-
sistent with experimental observations; see above). The con-
nectivity between neurons in each stimulus-selective excitatory
population was all to all. In addition, each neuron projected to
all other neurons in a target population. Background synaptic
conductance input was modeled using fast kinetics like those of
�-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
and �-aminobutyric acid type A (GABAA) receptors receiving
white noise, uncorrelated between the neurons. Excitatory recur-
rent connections were mediated by slow synaptic conductances,
like those used to model N-methyl-D-aspartate (NMDA) recep-
tors, which ensures that states with low firing rates are stable
(Wang 1999). Indeed, the simulations show that even states with
firing rates as low as 10 Hz can engage in rivalry alternations (Fig.
8A). The mean dominance duration as a function of the conduc-
tance (inputs) reproduces Levelt’s propositions (Fig. 8B; see
following text) and the distribution of their durations follow a
skewed Gaussian (Fig. 8C).

As found for our rate model, alternations in the spiking
neuronal network are not mediated by adaptation; rather, they
are noise driven. There are two sources of activity fluctuations
in the spiking network model: noise in the synaptic input
arriving from background sources (external to the network),
and variability from nonsynchronous, individual, synaptic in-
puts generated within the network. In the network described

earlier, transitions were driven by the latter source of noise. We
verified this by increasing the size of the network while
proportionally scaling down the unitary synaptic conductances,
such that the mean total conductance to each neuron was kept
constant, alhough the size of its input fluctuations was reduced
(external noise is kept fixed here). As the network size in-
creased, there was a point at which alternations ceased (at
10,000 neurons; not shown), revealing that the cause of the
transitions was internally generated noise in the form of spik-
ing neuronal variability. In addition to identifying the cause of
alternations, this result also shows that adaptation alone cannot
produce alternations in our model because the adaptation
modulation was not affected by this manipulation. This last
result also indicates that larger networks would require a
mechanism that maintains the internal spiking variability to
ensure that switching would be maintained. This could be
obtained by small amounts of externally correlated noise
(Moreno et al. 2002; Moreno-Bote and Parga 2006; Renart et
al. 2007; Zohary et al. 1994). Indeed, simulations of a large-
scale network (10,000 neurons per population) showed alter-
nations when a small fraction of the external noise (�1%) was
the same for all neurons in a population (not shown). Note that
the firing rate models with added noise presented in the
previous sections are thought to represent such large networks
with correlated fluctuations that cannot be averaged out. Be-
cause it is not feasible to perform long enough simulations of
very large spiking networks to obtain reliable statistics, we
simulated mainly small networks and therefore used com-
pletely uncorrelated external noise.

An interesting property of the model is presented in Fig. 9,
which shows the mean firing rate as a function of the stimulus
strength for the dominant and suppressed populations during
rivalry, as well as the mean firing rate of a single population
under nonrivaling conditions (e.g., when the competing mon-
ocular stimulus is turned off in binocular rivalry). During
nonrivaling conditions, the mean firing rate of the stimulated
population increases with input strength. In contrast, during
rivalry the mean firing rate of the dominant population shows
little dependence on stimulation strength. Furthermore, the
activity during rivalry is lower than that during nonrivaling
conditions throughout the range of stimulation strength. A
similar reduction in activity was also observed in the rate-based
and energy models (data not shown). Therefore a lower activity
during rivalry is a robust feature in all versions of our model.
This prediction can be tested experimentally using functional
magnetic resonance imaging (fMRI) or electrophysiology (see
DISCUSSION).
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Dependence of mean dominance durations at large
input strengths

Our energy-based, population rates, and spiking network
models produce Levelt’s Proposition II in a wide range of input
strengths (Figs. 2B and 8B). This behavior is robust in our
models as long as the input strength to the affected eye is
smaller than or similar to the input strength to the other,
unaffected eye (that whose input strength, e.g., image’s con-
trast is kept fixed). However, consideration of the situation
when the input strength of the affected eye is made much larger
than that of the other eye suggests that, at some point, a
different behavior than that stated in Levelt’s Proposition II
must emerge. This is readily apparent when one considers the
limiting case, when the image contrast to the affected (say, the
right) eye has been raised well above that of the other eye.
Clearly, at this point perception will be dominated by the
image given to the right eye, and presumably its mean domi-
nance duration must be much higher than that of the other (left)
eye. Therefore at a point around or soon after the contrast of
the right eye is increased above the (fixed) contrast of the left
eye, the mean duration of the right eye must start increasing, in
violation of Levelt’s Proposition II. This is precisely the
behavior produced in our models, as shown in Fig. 10A. As the
input strength to population B is made larger than that to
population A, the mean dominance duration of B increases
much more than the mean dominance duration of A is reduced.
Figure 10B provides an intuitive explanation of this result in
terms of the effect of input strength on the energy function. The
energy function in Eq. 1 is plotted for several values of gB, all
of them larger than gA. As gB increases, state Aon starts to lose
stability because its energy well becomes shallower. Crucially,
at the same time the energy well of state Bon becomes deeper,
thus increasing its mean dominance duration. Recently, Bras-
camp et al. (2006) showed that the behavior described earlier is
indeed observed experimentally in binocular rivalry, i.e., that
there is a significant violation of Levelt’s Proposition II so that
as the contrast of the affected eye is increased well above that
of the unaffected eye, the mean dominance durations of the
former rise rapidly. The same authors also showed that this
behavior is found in purely oscillator models, although more
analysis about its robustness is required.

D I S C U S S I O N

The mechanisms by which perceptual alternations occur
during binocular rivalry are not well understood, nor is it
known whether there are commonalities (e.g., similar architec-
tures) with the mechanisms that cause perceptual switching in
other bistable perceptual phenomena. The work presented here
shows that attractor networks, as a class of models, provide a
plausible framework to describe the dynamics of perceptual
bistability. Our approach differs from most existing models of
bistability, which assume the alternations are driven by some
form of slow adaptation acting on the dominant population
(Kalarickal and Marshall 2000; Lago-Fernandez and Deco
2002; Laing and Chow 2002; Lehky 1988; Matsuoka 1984;
Stollenwerk and Bode 2003; Wilson 2003). In those models,
the adaptation precludes the persistence of the dominant state
over time. The threshold for switching and the activity state
slowly drift toward each other and autonomously coalesce,
leading to a switch. The oscillation between the two competing
populations is the only stable state in the system. In contrast, in
our model the competing states remain stable fixed-points at all
times, and it is noise (e.g., the spiking variability observed
commonly in vivo) that causes alternations in dominance. Thus
alternations cease if noise is removed (Figs. 1 and 6), although
in its presence the interplay between adaptation and noise sets
the timescale of alternations. Finally, the same sources of noise
in our model also cause the variability in dominance durations
observed experimentally; i.e., there is no need to invoke an ad
hoc assumption about the presence of noise to explain this
variability.

Our model goes beyond previous energy-based conceptual-
izations of perceptual bistability (e.g., Haken 1994; Kanai et al.
2005; Kim et al. 2006; Riani and Simonotto 1994), by present-
ing a neurally plausible attractor model that behaves consis-
tently with experimental findings, most notably the increase in
alternation rate with stimulation strength observed in binocular
rivalry (Levelt 1968; Fig. 2B). This behavior would not arise
automatically in an attractor-based model but rather depends
on the network architecture. In particular, if the effect of
increasing stimulus strength in an attractor model was to
deepen the energy well of the corresponding attractor, this
would have the opposite outcome of lengthening of the dura-
tions the network spends in that attractor. Furthermore, com-
prehensive analysis of oscillator models revealed that they, too,
produce dominance durations that increase with stimulus
strength in large parts of parameter space (Shpiro et al. 2006).
The different behavior in our model (a shortening of the time
spent in the competing attractors with increasing stimulus
strength) arises from introducing in the energy function terms
coupling the attractors’ energy barriers with the input strength
(Fig. 2A). In the network architecture of our model this was
realized by feeding into each local inhibitory population a
signal equal to the total external input [either directly (Fig. 3A)
or by a global excitatory pool (Fig. 3B)], which is gated
(multiplied) by the activity level of the corresponding excita-
tory population. Our network thus illustrates a class of models
in which the wiring can be dynamically modified, as opposed
to being hard-wired. As for the question what brain region may
act as the excitatory pool in Fig. 3B (i.e., compute the total
strength of all sensory inputs), note that this need not be a
cortical region. Broad tuning like that expected from this
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hypothesized region is more characteristic of subcortical struc-
tures, which receive projections from a multitude of sensory
cortical areas, and therefore could compute the global signal
our model requires and send it back to the cortical local
inhibitory subpopulations as schematized in Fig. 3B.

Noise versus adaptation as possible causes of
perceptual alternations

The success of our model in reproducing salient dynamical
behaviors of perceptual bistability suggests that noise may be
the primary cause of perceptual alternations in bistability. This
contrasts with the prevalent view that perceptual alternations
are caused by some form of adaptation or fatigue (e.g., Kalar-
ickal and Marshall 2000; Lago-Fernandez and Deco 2002;
Laing and Chow 2002; Lehky 1968; Matsuoka 1984; Stollen-
werk and Bode 2003; Wilson 2003). It is therefore important to
note that, although it is known that there are multiple forms and
mechanisms of adaptation in the brain, in the specific context
of bistability a direct link has not been established to point to
adaptation as the primary cause of alternations. An important
observation in this context is that there is no evidence for
dependence between the durations of successive dominance
periods (e.g., a tendency for shorter periods to follow particu-
larly long periods or vice versa; Fox and Herrmann 1967;
Lehky 1995; Necker 1832; Rubin and Hupé 2004), as may be
expected if adaptation played a major role in causing alterna-
tions. Thus if adaptation plays any role in causing the alterna-
tions it would have to involve mechanisms with a very fast
reset, so that all trace of it is essentially gone soon after the
system has switched to the competing percept. Also at time-
scales longer than individual dominance durations, data from
long trials (5–10 min) of several binocular rivalry and plaid
stimuli reveals that both the durations’ means and their vari-
ances remain remarkably stable over time (Rubin and Hupé
2004), again showing no evidence for buildup of adaptation
over time.

The distinction between oscillator models (where adaptation
is the cause of alternations and noise is inessential) and
noise-driven attractor models (where adaptation is inessential
for alternations) is conceptually useful. However, given the
ubiquity of adaptation mechanisms in the nervous system, in
reality bistable networks most likely contain some form(s) of
adaptation and this, in turn, may affect some aspects of the
alternations. Indeed, we included adaptation in both our rate-
based and spiking neuronal networks. Note, however, that in
isolation (i.e., without noise) adaptation could not instigate
alternations in our model and its function was rather to produce
distributions of durations that resemble the skewed Gaussians
observed experimentally. Specifically, the weak adaptation
provided a natural and theoretically tractable way to implement
a form of short-term persistence that disfavored the system
leaving the attractor state right after it has settled into it,
compared with the probability of leaving it later in time.
However, other ways to implement such a tendency may be
equally valid, such as synaptic facilitation of local inhibition by
the selective excitatory population.

A few experimental studies examined the role of adaptation
in perceptual bistability. Blake et al. (1990) modified the
standard binocular rivalry paradigm by “forcing” one eye to
dominate for long periods of time (30 s); they found that, on

removal of the forcing, this eye’s dominance durations were
shorter by about a factor of two. Although this implicates
adaptation in the dynamics, the crucial question is not whether
adaptation is present, but whether it is responsible for the
alternations. If that were the case, then the very long forcing
should have led to very fast or even instantaneous transitions,
with narrowly distributed durations. Instead, Blake et al.
(1990) observed durations with a mean of about 2 s and large
variability, suggesting that even such saturated adaptation does
not instigate immediate transitions. In another experiment
Leopold et al. (2002) showed, for a host of bistable stimuli, that
alternations can be slowed down dramatically if the stimulus is
periodically removed from view, again suggesting that if ad-
aptation is involved in bistability, its influence does not carry
over from one dominance epoch to another. Moreover, as these
authors noted, their results suggest the involvement of a short-
term implicit perceptual memory that, as discussed earlier,
could produce distributions of dominance duration consistent
with experiments without the need to invoke adaptation.

Two recent studies provide experimental evidence for an
important role for noise in causing perceptual alternations.
Brascamp et al. (2006) studied the role of noise in causing
alternations by focusing on the prevalence of “return transi-
tions,” cases when the dominant percept gives way to a mixed
percept but then the system returns to the same percept that was
dominant before (rather than the competing one). Brascamp et
al. (2006) found a high prevalence of such transitions that, as
they noted, is more consistent with noise than with adaptation
as driving the alternations. Kim et al. (2006) studied the effect
of weak contrast oscillations on the alternation rate of two
rivaling images. They found the presence of stochastic reso-
nance, that is, a maximum effect of the frequency of the
oscillatory signal when it matches that of the alternations, an
effect that can be explained only if a large amount of noise is
present in the system.

The nature and sources of noise

In all three levels of description, the noise was fast compared
with the timescale of alternations [O(100 ms) vs. O(1 s),
respectively]; i.e., the transitions between states were not a
trivial consequence of noise at the same scale. The noise
timescale we posited is plausible biologically. In the spiking
neuronal network, recurrent connections are dominated by
NMDA-like synaptic receptors, and therefore the current fluc-
tuations inherit the timescale of those synapses, of the order of
100 ms (Moreno-Bote and Parga 2005b; Titz and Keller 1997;
Umemiya et al. 1999). Such receptors have been invoked in
other models, e.g., to stabilize sustained activity in prefrontal
cortex during a delayed-match-to-sample task (Wang 1999),
and to account for the slow ramping behavior of neurons in
posterior parietal cortex during a discrimination task (Wang
2002). Although in our simulations fast AMPA noise is present
as an external source, internally generated noise is dominated
by slower NMDA-generated fluctuations so as not to lead to
fast population activity fluctuations that could destabilize the
attractor dynamics.

There are other conceivable sources of noise in the synaptic
input to cortical neurons. Modulations in ongoing cortical
activity patterns, measured with optical imaging and local field
potential recordings, are known to affect spiking responses in
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single neurons (Arieli et al. 1996). Moreover, although the
underlying mechanisms are not well understood, changes in the
level of coherent cortical activity at those timescales have been
tied to modulations in attention and perceptual performance
(Fries et al. 2001; Salinas and Sejnowski 2001; Womelsdorf et
al. 2006). Thus variability appearing as mere noise in the
context of perceptual bistability may arise from changes in
internal network states that have functional roles in other
situations. Finally, it is reasonable to assume that other sources
of internal noise, including some that act at slower timescales
(e.g., variations in global neurotransmitter levels, endogenous
attention modulations, blinks) could also play a role in produc-
ing some of the switches.

Model predictions and experimental tests

An important feature of our model that has arisen from the
energy formulation is the presence of inhibition from the input
layer that is targeted at the competing population(s) (directly,
as in Fig. 3A, or by an excitatory pool, as in Fig. 3B). This leads
to a new prediction that can be tested with electrophysiological
and neuroimaging studies. The model predicts that activity
during rivalry should be lower compared with when the neural
population receives the same input under nonrivaling condi-
tions (Fig. 8). (Note that we use the term “rivalry” here in the
general sense of two competing interpretations of a stimulus
and, correspondingly, two rivaling neural populations. There-
fore the prediction is not restricted to binocular rivalry but also
holds for other bistable perceptual phenomena.) The reason is
that during rivaling stimulation, local inhibition is enhanced
due to the higher signal from the external input, leading to a
reduction in the activity of the dominant excitatory population.
Furthermore, the difference in activity between the two condi-
tions grows as the stimulation strength increases (Fig. 9). In
contrast, this prediction does not arise for models in which the
dynamics is governed by adaptation currents (oscillator mod-
els). There, when a population becomes dominant, it receives
no inhibitory inputs (because the only possible source is the
suppressed population), and therefore no reduction of activity
is expected compared with when the competing stimulus is
turned off. The predictions that oscillator and our attractor
model make in this regard are clearly different and could be
used to determine which model better describes the neuronal
dynamics during rivalry.

Interestingly, recent human fMRI studies of binocular ri-
valry provide some evidence to support the prediction of our
attractor model. Reduced blood oxygenated level–dependent
signal during rivalry compared with nonrivaling vision have
been shown in the lateral geniculate nucleus (Haynes et al.
2005; Wunderlich et al. 2005) and visual cortical areas V1
through V4 (Lee and Blake 2002; Polonsky et al. 2000). In
higher visual areas, an fMRI study found no differences in
activity between rivalry and nonrivalry conditions in the fusi-
form face and parahippocampal place areas (Tong et al. 1998),
whereas electrophysiological recording in monkeys have
shown reduced activity during rivalry in inferotemporal cortex
and the superior temporal sulcus (Sheinberg and Logothetis
1997). Further investigation is therefore needed to examine this
issue across the brain and for different bistability phenomena.

In conclusion, we have proposed a novel framework to
model the bistable perceptual alternations observed during

exposure to ambiguous or rivaling sensory stimuli. Our ap-
proach is based on the assumption that each of the competing
percepts corresponds to a neuronal stable state, and the transi-
tions between them are caused by noise. This differs from the
prevalent view that the transitions are caused by an adaptation
or fatigue process, which implies that the alternations reflect a
limit cycle (oscillations) in neuronal state space. Starting from
an energy-based model chosen to meet specific experimentally
observed characteristics, we derived neurally plausible rate-
based and spiking attractor neuronal networks, which are the
first implementations of this broad class of models showing a
dynamical behavior consistent with salient properties of per-
ceptual bistable phenomena. Our results suggest that the hy-
pothesis that competing percepts may correspond to the acti-
vation of different attractor states of neural activity, and that
alternations between them may be driven by noise, is sustain-
able from a theoretical point of view, and should be examined
experimentally with more care.

A P P E N D I X A : E N E R G Y M O D E L

This model is defined by a two-well energy function (Eq. 1). The
variable �r evolves according to Eq. 2 with time constant � � 10 ms.
The noise n(t) is an Ornstein–Uhlenbeck process (Risken 1989) with
zero mean and deviation � (� � 0.7)

d

dt
n � �

n

�s

� ��2

�s


�t� (A1)

where �s � 100 ms and 
(t) is a white noise process with zero mean
and �
(t)
(t�) � �(t � t�). See numerical procedures in APPENDIX E.

A P P E N D I X B : R A T E - B A S E D M O D E L S

Model with direct cross-inhibition

Based on the single-variable energy function of Eq. 1, we formulate
an energy function for a network with two populations, A and B, that
are firing at rates rA and rB, respectively. This energy function

E�rA, rB� � �
1

2
��rA � �B � 2�rArB�

�
1

2
gA��1 � rA�

2 � rB� �
1

2
gB��1 � rB�

2 � rA�

� �
i�A,B

�
0

ri

f��1��u�du (B1)

has quadratic potentials placed at the states (rA, rB) � (1, 0) and (0, 1).
For simplicity, the firing rates are dimensionless here, measured in
relation to a maximum firing rate so that 0  rA, rB  1. Here, f (�1)

denotes the inverse function of a neuronal population’s input–output
relation [i.e., firing rate � f(input)]. For weak stimuli and with f
idealized as a step function [i.e., f(u) � 0 for u 
 0, and f(u) � 1
elsewhere], the energy function is simply E(rA, rB) � �(�rA

2 	 �rB
2 �

2�rArB)/2; if � � �, it has two minima, placed at (rA, rB) � (1, 0) and
(0, 1), within the plane [0, 1] � [0, 1], where the firing rates are
defined. Thus in this parameter range the inhibition each population
exerts on the other is strong enough to preclude the two populations
from being active at the same time.

The following network dynamics

�
d

dt
rA � �rA � f ��rA � �rB � gA � �gA � gB�rA�
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�
d

dt
rB � �rB � f ��rB � �rA � gB � �gA � gB�rB� (B2)

minimizes the energy function E(rA, rB). Strictly, E(rA, rB) is a
Lyapunov function for the dynamics defined in Eq. B2. That is, E is
nonincreasing along trajectories

d

dt
E�rA, rB� � �

i�A,B

d

dt
ri

�

�ri

E�rA, rB�  0 (B3)

assuming that f is a nondecreasing function and � � 0 (Hertz et al.
1991).

Once stochastic input terms nA and nB are added, the dynamics
produces transitions between the two local minima of the potential
function, according to the equation set

�
d

dt
rA � �rA � f ��rA � �rB � gA � �gA � gB�rA � nA�

�
d

dt
rB � �rB � f ��rB � �rA � gB � �gA � gB�rB � nB� (B4)

The two noise terms are taken to be independent, continuous random
processes as in the single-variable energy-based model (Eq. A1).

Model with inhibition driven indirectly by an excitatory pool
and with weak adaptation

Here we derive the rate-based model for the architecture in Fig. 3B,
with an excitatory pool projecting to all local inhibitory populations to
mediate the mutual exclusivity, instead of direct cross-inhibition
between the percept-specific populations. Despite the differences in
architecture between this and the previous model, they can be mapped
one onto the other for particular parameters sets, as shown in the next
section. Parameters below were chosen to allow this mapping.

The activity of the excitatory population A, rA, is described by the
equation set

�
d

dt
rA � �rA � f��rA � �rA,inh � gA � �A � nA�

�a

d

dt
�A � ��A � �rA (B5)

with � � 0.75, � � 0.5, � � 0.1; f is the input–output curve, modeled
as a sigmoid function

f�x� � �1 � exp{�(x � ��/k}�1 (B6)

with threshold � � 0.1 and k � 0.05. The inputs to the neuron consist
of: recurrent excitation (with strength or efficacy �); local inhibition
(with strength �) that grades linearly with the inhibitory firing rate
rA,inh; a hyperpolarizing current, aA(t), with a maximum amplitude �
and time constant �a � 2 s that produces weak adaptation; and the
noise variable nA(t), with SD � � 0.03.

The local inhibitory population A is assumed to respond instanta-
neously to its inputs (i.e., fast recruitment) with a quadratic input–
output relation. The quadratic form allows the system to be easily
mapped onto the previous architecture (see following text), although
other steep nonlinear functions (e.g., cubic) also produce similar
network behavior. Its firing rate is given by

rA,inh � �rpool � �rA�
2 (B7)

where � � 0.5 is the ratio between the strength of the excitatory
feedback (see Fig. 3) and the input from the excitatory pool, rpool.

The excitatory pool receives inputs from the network (weighted by
� � 0.5) and from the external stimulation, and we assume that it

responds with a short recruitment timescale and linearly in response to
its inputs. Its firing rate is therefore given by

rpool � ���rA � rB� � gA � gB�
	

where [�]	 denotes linear thresholding (note that the rate of the pool
is nonnegative even when inputs are negative, allowing one to define
the system also in that input regime). Similar equations define the
dynamics of the population selective to stimulus B.

Relation between the models with and without direct
cross-inhibition

Despite the large differences in the architecture between the two
rate-based models we have presented, it is possible to map approxi-
mately one into the other for particular sets of parameters. In fact,
parameters in the model without cross-inhibition have been chosen to
allow this mapping, and therefore to have dynamics consistent with
Levelt’s propositions. We next explain the mapping.

Let us start from the case with no direct inhibition. Because the
response properties of interest are found with small stimulation
strengths (gA,B 

 1), we may approximate the activity of the local
inhibitory population (Eq. B7) by

rA,inh � ��� � ��rA � �rB�
2 � 2�gA � gB���� � ��rA � �rB�

During rivalry alternations values of rA,B are either close to 0 or 1
because the input–output relation for the excitatory population is
rather steep and saturates (Eq. B6). Suppose that population A is
dominant, so that B is inactive (rB � 0); then

rA,inh � �� � ��2rA
2 � 2�� � ���gA � gB�rA

Therefore the dynamics of rA when B is suppressed are approximately
governed by

�
d

dt
rA � �rA � f ��rA � ��� � ��2rA

2 � gA

� 2��� � ���gA � gB�rA � �A � nA� (B8)

Now compare this equation with the corresponding Eq. B4 from the
case with direct inhibition. If we set 2�(� 	 �) � 1 (or approximately
so) both equations depend identically on the stimulation strengths.
Although the term �(� 	 �)2rA

2 differs between the two models, this
difference does not affect the qualitative behavior as the stimulus
strengths are varied. However, this term imposes a number of condi-
tions that should hold to allow alternations and to produce mutual
exclusivity between the possible stationary states. Because the dom-
inance state should be stable, we have to impose the condition that the
total synaptic input to the population is on average above the firing
threshold, that is � � �(� 	 �)2 � �. To guarantee mutual exclusivity
we demand that if both populations attempt to become active simul-
taneously, the net input should be below threshold. This condition
imposes � � �(2� 	 �)2 
 �. The preceding three conditions should
hold to produce a dynamic properties that are consistent with exper-
imental observations. In simulations we have chosen � � 0.75 and
� � � � � � 0.5, although others are also valid.

Besides the architecture, the main difference between the two
models is the presence of adaptation for the model with indirect
inhibition. Adaptation shapes the distribution of dominance durations
but its influence is limited; we choose parameter values such that
adaptation by itself (without noise) does not generate transitions
between percepts. This means that the activity of a fully adapted
dominant population cannot drop below the threshold of the input–
output relation. Because the maximum amplitude of adaptation is �
(see Eq. B5), this condition translates into the parameter constraint
(from Eq. B8) � � �(� 	 �)2 � � � �, We have used � � 0.1 and,
to generate alternations with a duration of a few seconds, we have
chosen � � 0.03, unless noted otherwise.
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A P P E N D I X C : S P I K I N G N E U R O N A L N E T W O R K

We have simulated a cell-based network with the connectivity
described in Fig. 3B. Each population contains N � 100 leaky
integrate-and-fire neuron models. Coupling is with conductance-based
synapses and all-to-all connectivity (each neuron receives connections
from all neurons in a presynaptic population). Model equations and
parameters follow (Brunel and Wang 2001; Moreno-Bote and Parga
2005a,b; Wang 2002). The voltage below the spiking threshold for the
excitatory neurons in the competing populations obeys

Cm

d

dt
V�t� � �gL �V�t� � VL� � Isyn�t� � Iadop�t�

with membrane capacitance Cm � 0.5 nF, leak conductance gL � 25
nS, producing a membrane time constant �m � Cm/gL � 20 ms, and
resting potential VL � �65 mV. The neuron emits a spike when the
voltage reaches the threshold Vth � �54 mV, after which the voltage
is reset to Vreset � �60 mV. Isyn(t) is the total synaptic current
delivered to a neuron. Iadap(t) is a slow conductance-driven adaptation
current: Iadap(t) � gadap(t)(V � Vadap); gadap is increased by �g �
0.075 nS with each spike and decays to zero exponentially with time
constant �adap � 2 s; Vadap � �80 mV. Voltage equations for the
inhibitory populations and the pool are the same, but without adap-
tation current.

The synaptic currents to the excitatory (E), inhibitory (I) popu-
lations, and the pool (P) are Isyn,E(t) � INMDA,rec(t) 	 IGABA(t) 	
Iext,E(t) 	 Iback(t), Isyn,I(t) � IAMPA(t) 	 Iext,I(t) 	 Iback(t), and
Isyn,P(t) � IAMPA(t) 	 Iext,P(t) 	 Iback(t), respectively. The NMDA
recurrent synaptic current is modeled with a linearized driving force
(valid below threshold) as INMDA,rec � ¥i

N gNMDA,i(t)(V � VE) (Brunel
and Wang 2001; Moreno-Bote and Parga 2005b), where VE � 0 mV
and gNMDA,i(t) is the individual conductance generated by the presyn-
aptic neuron i, defined as

d

dt
gNMDA,i�t� � �

gNMDA,i�t�

�NMDA

� �gNMDA,max � gNMDA,i�t�� �
j

��t � tj
i�

Here, �NMDA � 100 ms, gNMDA,max � 0.15 nS is the individual
synaptic maximum conductance, and the sum represents the spikes
emitted by neuron i at previous times tj

i. Equations for the AMPA and
GABA currents are (k � AMPA, GABA) given by Ik � gk(V � Vk),
where the conductance is

d

dt
gk�t� � �

gk�t�

�k

� gpop,unit �
j,i

��t � tj
i�

with �AMPA(GABA) � 10 ms (20 ms), VE(I) � 0 mV (�80 mV), and the
sum of spikes now extends to all presynaptic neurons i. The unitary
conductance for E to P connections is gE3P,unit � 0.075 nS, gP3I,unit �
0.23 nS for the P to inhibitory population (I) connections, gI3E,unit �
0.175 nS for the I to E connections, and gE3I,unit � 0.1 nS for the E
to I synapses.

External inputs are modeled as constant excitatory conductances to
produce a current Iext,E,A(B) � gA(B)(V � VE) for the E populations
A(B), Iext,I,A(B) � fIgA(B)(V � VE) for the I populations A(B), and
Iext,P � fP(gA 	 gB)(V � VE) for P, following the architecture of Fig.
3B. The factors fI � fP � 0.1 measure the effect of the external inputs
on I and P populations in relation to E, and they control the slope in
Fig. 9.

Each neuron receives an independent source of noisy conductance
with AMPA and GABA contributions mimicking spontaneous exter-
nal activity (Destexhe et al. 2003; Moreno-Bote and Parga 2005a),
defined by (k � AMPA, NMDA) Iback(t) � �

k
[gk 	 nk(t)][V(t) � Vk],

where nk(t) is a colored noise as in Eq. 3 with timescale �AMPA(GABA) �
10 ms (20 ms). The means (gk) and dispersions (�k) for the background
conductances are gAMPA(GABA) � 5 nS (7.5 nS), �AMPA(GABA) � 3.53 nS
(3.53 nS), equal for all neurons.

The parameters are chosen as follows: Background conductances
alone should produce low firing rates in all populations. Connections
between E and P, and P to I should be strong enough to produce
winner-take-all behavior. Recurrent NMDA connections should be
tuned to support attractor states and also allow transitions between
them. Connections between E and I also need to be strong.

A P P E N D I X D : L O G - N O R M A L A N D G A M M A

F I T S T O T H E D I S T R I B U T I O N O F

D O M I N A N C E D U R A T I O N S

The distributions of dominance durations in Fig. 7A have been fitted
with log-normal and gamma distributions. The log-normal distribution
is defined as

flog n�t� �
1

�2��
exp��(log t � ��2/2�2}

and the gamma distribution as

fgamma�t� � Ct��1e�t/�

where C is the normalizing factor. Maximum likelihood fits of the
simulated distributions with a log-normal distribution give the values
� � 1.24 and � � 0.35, and with the gamma distribution give � �
8.66 and � � 0.41. The quality of both fits is very similar.

A P P E N D I X E : N U M E R I C A L P R O C E D U R E S

The dynamical equations for energy, rate-based, and spiking net-
work simulations are integrated using Euler’s method with time step
�t � 0.1 ms. Recomputing with a shorter integration time step did not
produce appreciable differences in any of the results that we obtained
and reported with the standard time step. The dominance durations for
each percept in the energy model are defined by the amount of time in
which the variable �r is below (or above) �r � 0. For the rate-based
model, a transition occurs when the firing rate becomes larger (or
smaller) than the firing rate of the other population. For the spiking
network, a transition occurs when the averaged population firing rate
(number of spikes emitted by the excitatory population over time
window �t � 100 ms divided by the number of excitatory neurons)
reverses order with the firing rate of the competing population. In this
case, due to the large activity fluctuations, we impose the additional
constraint in defining a transition that the firing rate of the population
that becomes dominant must be at least �5 Hz. Energy and rate-based
models typically run for 105 s (model time), generating around 104

durations for each percept. Means in all the plots are computed from
the time series generated with these long simulations and error bars
correspond to SDs of the means. Also the distributions and switch-
triggered averages obtained from these time series are smooth and
robust. For the spiking network simulations, shorter runs were used
due to the large number of neurons per population being simulated.
These spiking network simulations typically run for 104 s, producing
on the order of 103 alternations. We used Fortran 90 custom code to
simulate the models, and Matlab to analyze and plot the data, along
with a random generator for white noise that generated long nonre-
petitive series.
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