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The most direct way to understand PCA is to consider the following linear
algebra question: assuming the data is living in a d-dimensional vectorial space,
what is the best choice of basis to represent the data? Intuitively, a “good” basis
would be a basis in which we expect the data structure to be salient. However
it is hard to imagine an automated procedure that produces such a basis without
knowledge of the data characteristic “features ”in the first place. Alternatively,
we can try to find the basis in which the data covariance matrix is as simple as
possible, that is under a diagonal form. Remember that the data covariance matrix
is diagonal if the components of the centered data vector are uncorrelated. PCA
achieves such a goal.

To see how it works, let us remember that a change of basis affects the co-
ordinates of the data via a change of matrix P . Specifically, if xi is the original
data coordinate vector, the new coordinate vector yi is obtained via matrix multi-
plication by P : yi = Pxi. Incidentally, we can consider the data matrix in the
new coordinates: Y = PX where P is the same yet-to-be-defined change-of-basis
matrix that simplifies the data covariance. To find P , we are going to use the fact
that the covariance matrix of the new coordinates CY Y is related to the covariance
matrix of the original coordinates CXX by:

CY Y =
1

n− 1
Y Y T =

1

n− 1
(PX)(PX)T = P

(
1

n− 1
XXT

)
P T = PCXXP T .

Now from the previous lecture, we know that a good candidate basis should include
the top eigenvector of Cxx. This suggests utilizing the spectral theorem to consider
the full eigendecomposition of CXX

CXX = V DV T , with D =


s1 0 . . . 0
0 s2 . . . 0
...

...
0 0 . . . sd

 and

where the eigenvalues are such that s1 ≥ s2 ≥ . . . ≥ sd ≥ 0 and where the matrix
V is orthogonal, i.e. V V T = I . This allows us to rewrite the covariance CY Y
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under the form

CY Y = PCXXP T = PV DV TP T = (PV )D(PV )T ,

which makes apparent what is the “good” choice for the change-of-basis matrix P .
Choosing P as equal to the orthogonal matrix obtained via eigendecomposition,
i.e. P = V −1 = V T , yields

CY Y = (PV )D(PV )T = (V −1V )D(V −1V )T = IDI = D .

Thus, when considered in the basis defined by the eigenvectors of CXX , the covari-
ance of the data is equal to the diagonal matrix D, whose diagonal entries satisfies
s1 ≥ s2 ≥ . . . ≥ sd ≥ 0. As intended, all the off-diagonal terms are zero, which
means that the covariance between the data components in the eigenvector basis
is zero: 〈yiyj〉 = 0. Moreover, as V is an orthogonal matrix, we can interpret
the components of y as the projection coefficients of x onto the eigenvector vi,
1 ≤ i ≤ d, which constitute an orthonormal basis:

y = V Tx =


vT
1

vT
2
...
vT
d

x =


vT
1 x

vT
2 x
...

vT
d x

 .

In turn, we can interpret the eigenvalue si as the variance of the data when projected
onto the eigenvector vi.

Depending on the field of studies, the eigenvectors v are also called principal
components or singular vectors. These eigenvectors can be thought of as data “fea-
tures” that can be retrieved from the data covariance matrix. Projecting the data on
the first k eigenvectors produces a k-dimensional representation while preserving
as much of the data variability as possible. Indeed, the data variability captured by
the first k eigenvalues is the sum of the k first eigenvalues

k∑
i=1

V(yi) =

k∑
i=1

1

n− 1

n∑
i=1

(vT
k xi)

2 ,

=

k∑
i=1

vT
k

(
1

n− 1
XXT

)
vk ,

=
k∑

i=1

vT
k CXXvk ,

=

k∑
i=1

sk ,
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where we remember that the eigenvalues are ranked by decreasing order. The frac-
tion of the data variability accounted by the first k components is given by

fk =
s1 + . . .+ sk

s1 + . . .+ sk + . . .+ sd
,

where the denominator s1 + . . . + sk + . . . + sd is the total variance of the data.
The closer fk is to one the more faithful is the projection, i.e. the more accurate is
the dimensional reduction.
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