Quantitative Methods in Neuroscience
(NEU 466M)
Homework 3
Due: Tuesday Feb 18 by 12 pm (uploaded to Canvas)

In this assignment you will explore spike train statistics. General guidelines: Read
through each complete problem carefully before attempting any parts. Feel free to col-
laborate in groups of size 2-3, but always note the names of your collaborators on your
submitted homework. For graphs: clearly label your axes and use good color and symbol
choices. Print out your matlab code (in the form of a script file). For derivations you're
asked to do ‘by hand’ (in other words, analytically, using paper and pencil) feel free to turn
in handwritten or typed-out work.

1) Loading/reading datafiles in Matlab; a first characterization of the blowfly
H1 neuron for horizontal motion estimation.

a. Download the data file c1p8.mat from the course webpage and save to a local
directory. Load this data into matlab using the command load on the command
line or by navigating to the ‘Open’ menu option on your Matlab work window.
This data file has spikes from the H1 neuron (rho) in response to the stimulus
(stim), both sampled at 500 Hz for a total of 20 minutes. Use whos to check the
variable names and dimensions. Compute the mean of stim, rho. Compute the
standard deviation of stim. Is it fair to say the mean is ‘small’ or ‘close’ to 0
or not? How would one set an overall scale for comparison, to determine what
mean value counts as ‘small’? Compute and plot a histogram of stim, with 40
bins (use hist).

b. Compute the autocorrelation function of rho using xcorr and plot it (zoom using
x1lim). Mark the features of the autocorrelation, and write on the plot, in real
units (seconds or milliseconds), the widths of each of the features: 1) the central
peak, 2) the narrow dip around the peak, and 3) the slower hill around the central
peak and dip. Do the same for stim.

c. What relevant quantity does the height of the central peak of the autocorrelation
of the spike train represent? Derive/prove this claim by hand (pencil and paper),
using the autocorrelation formula and any relevant properties of the spike train.

d. Isit ever possible for (any parts of) the autocorrelation function of a spike train to
become negative? Prove your answer by hand. Is it ever possible for a zero-mean
signal to have negative autocorrelation values? Show how this could be by hand
— i.e., construct a simple example of a signal to support your answer. Matlab:



What changes if you first mean-subtract the spike-train rho before computing
its autocorrelation?

e. Plot the cross-correlation function Cstim, rho- Explain why the peak is where

it is. Interpret this plot in detail in terms of what it says about changes in the

stimulus and the spike response. For example, “whenever the stimulus becomes

positive, the response --- 7’. Now plot Crho, stim- 1nterpret and explain in

similar terms: “whenever the cell spikes, - --”.1

2) Analysis of structure in spike train data from the entorhinal cortex: au-
tocorrelation, crosscorrelation, and interspike histograms Entorhinal cortex
exhibits prominent oscillations in the collective activation of its neurons. These os-
cillations include prominent contributions in the theta (6-12 Hz) and gamma (40-100
Hz) bands. However, it is difficult to see these oscillations by eye in the spike trains
of single neurons. Our aim is to mine neural spike train data for signatures of oscilla-
tions. As in class, we’ll look at crosscorrelations, and then we’ll also look at interspike

interval histograms to see if certain interspike intervals are more frequent than others.

a. Load gridcell halfmsbins.mat, a data file with spike trains of three simulta-
neously recorded entorhinal cortical cells from the same electrode bundle (thus,
these cells are very close to each other, within about a 100um radius 2). 1’s
represent a spike in the given time-bin, and the data are sampled at 2000 Hz.
Call these trains s1, s2, and s3, respectively, and call the length of each train
N. Scrutinize by eye the spike train s1 in the appropriate time-windows to look
for signatures of theta- or gamma-band oscillations, make a plot, and explain
your result. Compute the autocorrelation of s1, and plot it around with 1000
time-bins on each side of the central peak (you can compute the full autocor-
relation then use x1im, or restrict xcorr using maxlag). Identify the refractory
period and anything else that appears interesting. Zoom in or out to search for
oscillations, and print out plots with relevant features. Note the duration of the
features in milliseconds.

b. Assessing the significance of structure in the autocorrelation: How do we know
when a peak or a dip in an autocorrelation is significant or due to noise? A chance
noise-driven feature is more likely when the signal is short: why? One way to

1 . .. .
. We Wﬂ.l revisit tl?e quantity Crho7 stim
interpretation for trying to solve the encoding problem.

2If you're curious about the estimated distance in cortex between cells recorded on an electrode, see
Mechler et al., Three-dimensional localization of neurons in cortical tetrode recordings, J. Neurophysiol.,

2011.

in future lectures because it has a very interesting and useful



assess the significance of features in the autocorrelation is to generate random
spike trains with the same number of spikes as the original train, and compare
its autocorrelation with the original one. Randomize s1 as follows: create a ran-
domly ordered vector of indices from 1 to N by randind=randperm(N). Then
sirand= s1(randind) is a randomly permuted (ordered) version of the spike
train. Plot autocorrelations of s1 and sirand on the same plot. Which features
of s1 are not present in sirand and which features continue to be present? The
random spike train autocorrelation gives you a measure of the level of autocor-
relations you would expect in a spike train with no specific structure — i.e., by
chance. Values above it can be deemed significant based on how much higher
they are from this assessment of chance.

. Shuffling spike trains: The previous randomization method preserved only the
total number of spikes over the recorded interval (the mean spike rate), while
removing (randomizing) all structure in the spike train. The next step is to ask
whether there is important structure in the data beyond adjacent spike pairs —
thus, we will generate a partially randomized dataset that preserves inter-spike
intervals of adjacent spikes, but randomizes the ordering of the intervals. (The
result will be a spike train in which every interspike interval will occur with the
same frequency as in the data-set, but the ordering of events will be randomized.)
Here’s how: Compute the list of spike times in s1 using find. Use diff on the
list of spike times to generate a list of interspike intervals. Randomly permute
the list of interspike intervals. Finally, reconstitute a list of spike time indices
from the permuted intervals (hint: use cumsum). Finally, generate a vector of
zeros of the same size as s1, and set all entries at the list of reconstituted spike
time indices to 1. You now have a spike train sishuff that preserves the mean
spike count and the interspike intervals in s1 (we’ll verify this in e. below), but
all other structure is randomized.

Compare the autocorrelation of s1 and sishuff on the same plot. What has
changed and what has remained the same? Think (hard!) about this and explain
why.

. Now compute the cross-correlation between all pairs of s1, s2, s3 and make
separate plots for each. Superimpose the cross-correlations between the corre-
sponding pair of slrand, s2rand, s3rand and of sishuff, s2shuff, s3shuff
on the corresponding plot. Compare and contrast with the autocorrelation re-
sults and for each feature, and explain.

. Interspike interval histogram. Another way to look for temporal structure in
neural spike data is to analyze the histogram of interspike intervals. Plot his-



tograms of the interspike intervals for each of s1, sirand, slshuff (use hist
with 1000 bins). Zoom to small intervals, and identify peaks/plateaus that might
correspond to theta- and gamma-band oscillations.



