
Quantitative Methods in Neuroscience
(neu 466M)

Homework 6
Due: Thursday April 14 by 12:00 pm (to be uploaded on Canvas)

This homework explores Principal Components Analysis (PCA) and some interesting
uses. General guidelines: Read through each complete problem carefully before attempting
any parts. Feel free to collaborate in groups of size 2-3, but always note the names of your
collaborators on your submitted homework. For graphs: clearly label your axes and use
good color and symbol choices. Print out your matlab code (in the form of a script file).
For derivations you’re asked to do ‘by hand’ (in other words, analytically, using paper and
pencil) feel free to turn in handwritten or typed-out work.

1) Spike sorting with PCA. In many in vivo studies, action potentials of single neu-
rons are recorded by extracellular electrodes. Action potentials are large enough events
that the voltage fluctuations are visible to an electrode placed many micrometers away
from the cell body. However, it is often the case that an electrode views action poten-
tials from multiple cells at the same time. The waveforms from individual cells tend
to have a stereotypical shape, and we can use this fact to cluster the waveforms from
individual cells in order to identify the source of each action potential.

The file SpikeSortingData.mat contains a sample dataset from a typical extracellular
recording. The variable voltageRecording is the entire voltage sequence recorded
during the experiment. The matrix waveforms contains all the action potential events
extracted from the recording: each row of the matrix is the recorded waveform of an
action potential. We can think about each time-point in the waveform as a separate
variable. The shape of a waveform is determined by the covariance of different times
within the waveform.

a. Begin by plotting a few of the waveforms on the same plot. How many distinct
neurons (based on the different waveform shapes) do you think can be seen in
this recording?

b. Calculate the covariance matrix of the waveforms using the cov command. The
70 × 70 covariance matrix represents how the different time-points in the wave-
forms vary relative to each other. Find the largest 20 eigenvalues and corre-
sponding eigenvectors of this covariance matrix (use eigs). Plot the eigenvalues.
How rapidly do the values fall off? It’s often useful to plot the y-axis on a log
scale. Also plot the cumulative sum of the ordered eigenvalues, normalized by
the last point in the cumulative sum (i.e. by the sum over all 20 eigenvalues).



c. Plot the first four eigenvectors (these should each be of the same length as the
individuals waveforms). The eigenvectors are “features” of the waveforms picked
out as having the highest variance (largest eigenvalues) across the dataset. In-
terpret the three eigenvectors – what features of the actual waveforms do they
approximate? When spike sorting by hand, it is common to pick out waveform
height, number of lobes, and the depth of the lowest trough as features for differ-
entiating between spikes from different cells. How do the PCA features compare?

d. For each data waveform, compute its coefficients (projection) onto the first and
the second eigenvectors or features. This reduces the data waveform into a 2D
coordinate, given by the two coefficients. Plot the coordinates for the different
waveforms as a scatterplot – you should see clear clusters. What does this plot
reveal about the number of neurons recorded in the experiment/the identity
of the different waveforms? Explain. By contrast, try picking features by hand:
e.g. pick timeindex 25 and time 30 (corresponding to the first peak and following
trough) in the waveforms as the two coordinates and make a new scatterplot.
Comment. Pick some different notable times or other features by hand and see
if you can do better.

e. Finally, use the function kmeans to cluster the lower-dimension waveforms (try c

= kmeans(projectedWaveforms,k); where k is the number of neurons you think
are there). Now plot separately the waveforms as you did in part [a.], but only the
waveforms for which c=1 (Hint: try command plot(1:70,waveforms(c==1,:))).
Make separate plots for c=1 to k.

2) Compression or dimensionality reduction with PCA. Download the file
HandwrittenDigits.mat and the function plotImage.m from the course website. The
.mat file contains a matrix of images of handwritten numbers. Each row of the matrix
contains a 28x28 pixel image, with elements resorted into a vector. The helper function
plotImage will take a single row of this matrix as its argument and plot an image (for
instance, after loading HandwrittenDigits.mat, type plotImage(images(1,:))).
Have a look at a few different digit images.

a. Get the largest 200 eigenvalues and eigenvectors of the covariance matrix of the
images data. Plot the eigenvalues and the cumulative sum of the eigenvalues
normalized by the total sum of the eigenvalues. Use plotImage to plot the top
10 eigenvectors (try the subplot option so that you can put all these plots on
the same page) and the bottom 10 eigenvectors. What is different about the
eigenvectors associated with the largest versus the small eigenvalues?

b. Low-dimensional approximation of the images: Because the set of all eigenvectors



is a basis for the images, any image can be written as its projection (coefficient)
onto the kth eigenvector times that eigenvector, summed over all k. Verify this
for the first image x (the first row of the images matrix). Next, a low-dimensional
representation of x can be generated by computing the sum over only the top few
eigenvectors. Reconstruct a low-dimensional version of x using only the first two
eigenvectors. Plot both the original and reconstructed image using plotImage.
Now reconstruct x using the first 20 eigenvectors. The resulting vector should

be the sum xlow dim =
20∑
α=1

(xTvα)vα where the vα are the eigenvectors and x is

the original image.

c. Let’s be systematic about the quality of the low-dimensional approximation:
Calculate the reconstruction of the first image from the first k eigenvectors,
as k varies from 1 to 200. Calculate the mean squared error (MSE) of each
reconstruction (by taking the mean of the squares of the differences in pixel
values between the original and reconstructed image vectors). Plot the MSE as
a function of k. Do the same for a few different images from the images data
set as well. Keeping in mind that the original images are each 28 × 28 = 784
dimensional vectors and that there are 10 different handwritten digit categories,
what do these plots reveal about the data?


