
Quantitative Methods in Neuroscience
(NEU 466M)
Homework 7

Due: Thursday April 21 by 12:00 pm (to be uploaded on Canvas)

In this assignment, we will apply Bayes’ rule and Maximum Likelihood Estimation with
the dual aims of getting familiar with using this machinery and also learning how it can
yield interesting results. General guidelines: Read through each complete problem carefully
before attempting any parts. Feel free to collaborate in groups of size 2-3, but always note
the names of your collaborators on your submitted homework. For graphs: clearly label
your axes and use good color and symbol choices. Print out your matlab code (in the form
of a script file). For derivations you’re asked to do ‘by hand’ (in other words, analytically,
using paper and pencil) feel free to turn in handwritten or typed-out work.

1) Hypothesis assessment with Bayes’ rule. Very broadly speaking, there are two
types of neurons in the cortex: principal neurons and interneurons. Interneurons fire at
higher rates than the rate of principal neurons: suppose the mean rate of interneurons
is 100 Hz, while the mean rate of principal cells is 40 Hz. Your extracellular electrode
is very close to a neuron and in the first 5 ms, you observe a spike. What is the
probability you are recording from an interneuron versus a principal neuron, assuming
both types of neurons are equally numerous? (In your formulation, let HI , HP be the
hypotheses that you are recording from an interneuron or a principal cell, respectively,
and assess the probability thatHI is true.) Next, suppose that interneurons are 4 times
more numerous than principal cells. Now what is the probability you are recording
from an interneuron? Use Bayes’ rule to obtain these probabilities.

2) Maximum likelihood rate slope estimation (MLE) for linear-rate Poisson
and Gaussian neurons.

a. In class, we wrote down a model of neural activity as a Poisson process with
rate λ = θx, where x is some stimulus and θ is some unknown proportionality
constant (slope). We analytically derived the maximum likelihood estimate θ̂ML

of the unknown slope θ from data-samples {(x1, r1), · · · , (xN , rN )}, and found
that it is:

θ̂ML =

∑N
i=1 ri∑N
i=1 xi

. (1)

Let us now do the same if the probability of neural activty is Gaussian: the
mean rate λ varies linearly with the stimulus, λ = θx, with unknown θ. Then



the probability of (analog) responses r = (r1, · · · , rN ) for stimulus values x =
(x1, · · · , xN ) is given by p(r|x, θ) = G(r− θx, σ2) =

∏N
i=1G(ri − θxi, σ2), where

G(ri − θxi, σ2) =
1√

2πσ2
e−(ri−θxi)2/2σ2

.

p(r|x, θ) is the likelihood of θ. Maximize the logarithm of the likelihood with
respect to θ, to derive the ML estimate θ̂ML of the unknown slope for this linear-
response model with Gaussian noise.

b. You now have two different ML-optimal estimates for the slope of a linear re-
sponse, assuming the noise in the response is Poisson or Gaussian, respectively.
Compare and contrast these two expressions. Look back at your notes on the
linear least-squares regression estimate of the slope and compare that expression
with these two results. The comparison reveals that linear regression is the op-
timal solution for fitting lines through data, if the data are Gaussian-distributed
about their mean values! It also implies that linear least-squares regression need
not be not the optimal solution (in a maximum likelihood sense) if the noise in
the response variable around its mean is not Gaussian. In c.), we will explicitly
explore this.

c. Download the dataset linearneuron1.mat (contains stimulus x and responses
r). Use our derived expressions for θ̂ML for both the linear Gaussian and linear
Poisson neuron ML estimates, to obtain two estimates of the slope. In Matlab,
plot the data as a scatterplot of r versus x, and also plot a line through it with
the two estimated slopes. Which is a better fit? To understand why, collect all
data with the same stimulus value and plot a histogram of the responses. Do
this for the different stimulus values. Does the distribution look more Gaussian
or Poisson? For each stimulus value, obtain the mean of all responses and the
variances of all responses. Plot the mean versus the variance for all stimulus
values. Now can you tell if the data are Poisson or Gaussian? Finally, add a
linear least-squares regression fit to the data: how does it compare?

d. Do the same as [c.], but for the dataset linearneuron2.mat.


