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Mean
{x1, · · · , xN}

hxi ⌘ 1

N

NX

i=1

xi sample mean

N samples of variable x

other notation: x̄

mean(x)



Binned version of mean
N samples of variable x{x1, · · · , xN}

{n1, · · ·nB} counts per bin

hxi ⌘ 1

N

BX

i=1

nici sample mean

{c1, · · · cB}, B bins



Variance
{x1, · · · , xN}

homework: show that h(x� hxi)2i = hx2i � hxi2

h(x� hxi)2i ⌘ 1

N � 1

NX

i=1

(xi � hxi)2 sample variance
a measure of the “scatter”/spread 
of the data around its mean value



Standard deviation
{x1, · · · , xN}

p
h(x� hxi)2 standard deviation



Covariance
{x1, · · · , xN}{y1, · · · , yN}

sample covariance

N samples each of
variables x, y

C(x, y) ⌘ 1

N � 1

NX

i=1

(xi � hxi)(yi � hyi)

(C(x, x) is simply sample variance of x)



Covariance: what does it measure?

C(x, y) ⌘ 1

N � 1

NX

i=1

(xi � hxi)(yi � hyi)

• If x, y  both deviate from their means together (both up then both 
down) then terms in sum are positive, C(x,y) > 0.

• If x,y deviate from their means independent of each other, then 
terms in the sum are randomly positive and negative, C(x,y) ~=0.

• If x,y deviate from their means in opposite directions, then terms 
in sum are negative, C(x,y) < 0. 

Literally, covariance is a measure of co-variation. 
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Covariance example I
x, y independent

x = randn(1000, 1)

y = randn(1000, 1)

C(x, y) = 0.009; C(x, x) = 1.069

x > 0, y around 0 without bias

C(x, y) = 0.009; C(x, x) = 1.069
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Covariance example II
x, y independent

x = 0.2 ⇤ randn(1000, 1)
y = 0.2 ⇤ randn(1000, 1)

C(x, y) = 0.001; C(x, x) = 0.0407
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Covariance example III
x, y not independent

C(x, x) = 0.907; C(x, y) = 0.464; C(y, y) = 0.469

x = randn(1000, 1)

y = 0.5 ⇤ x+ 0.5 ⇤ randn(1000, 1)

x > 0, y > 0



Alternative notation

• Mean: 

• Variance:

• Covariance: 

• Standard deviation

hxi, x̄, µx, E(x)

hx2i � hxi2, x2 � x̄2, �2
x, var(x), C(x, x)

hxyi � hxihyi, xy � x̄ȳ, �2
xy, cov(x), C(x, y)

p
hx2i � hxi2,

q
x2 � x̄2, �x, std(x)



Pearson’s correlation coefficient

⇢(x, y) =

⌦
(x� hxi)(y � hyi)

↵
p

h(x� hxi)2ih(x� hxi)2i

⇢(x, y) =
C(x, y)

�x�y

shorter-form notation



Pearson’s correlation coefficient and 
covariance only measure linear dependency

from: https://en.wikipedia.org/wiki/Correlation_and_dependence



Robust statistics?

• Mean, variance are easy to compute, widely 
used/useful. 

• But not robust: sensitive to outliers.
• More robust alternative to mean: median. 



LINEAR REGRESSION IN TERMS OF 
SAMPLE STATISTICS

Application



Regression: curve-fitting

{(x1, y1), (x2, y2), · · · , (xN , yN )}

free parameters: (w0, w1, · · · , wM )

ỹ(x) = w0 + w1x+ · · ·+ wMxM =
MX

j=0

wjx
j

Scalar explanatory variable (X) and response variable (Y); N samples



Linear least-squares regression

dE

dw0
= 0,

dE

dw1
= 0

E =
1

2

NX

n=1

[ỹ(xn;w)� yn]
2

=
1

2

NX

n=1

[
MX

j=0

wjxj
n � yn]

2

=
1

2

NX

n=1

[w0 + w1xn � yn]
2

To solve for best w0, w1: 

M=1 for linear 
regression



Linear least-squares regression

E =
1

2

NX

n=1

[w0 + w1xn � yn]
2

dE

dw0
=

NX

n=1

[w0 + w1xn � yn]

= Nw0 +Nw1hxi �Nhyi = 0

(1)w0 + w1hxi � hyi = 0



Linear least-squares regression

E =
1

2

NX

n=1

[w0 + w1xn � yn]
2

dE

dw1
=

NX

n=1

[w0 + w1xn � yn]xn

= Nw0hxi+Nw1hx2i �Nhxyi = 0

w0hxi+ w1hx2i � hxyi = 0 (2)



Linear least-squares regression

w1 =
C(x, y)

C(x, x)

w0 = hyi � w1hxi

slope

y � intercept

In homework: check matlab’s polyfit with this optimal expression for linear-least squares fitting.



Linear least-squares regression

w1 =
C(x, y)

C(x, x)

w0 = hyi � w1hxi

slope

y � intercept

⇢(x, y) =
C(x, y)

�x�y
Contrast with w1: Pearson’s correlation

Different normalizations: 
• Different correlation coefficient for same slope but different amounts of x,y-scatter. 
• Same correlation for different slopes and different x,y scatter.  
• Correlation: more strongly penalizes y-scatter, more weakly penalizes x-scatter. 



Slope versus Pearson’s correlation coefficient

from: https://en.wikipedia.org/wiki/Correlation_and_dependence

same slope
different ρ

different 
slope, same ρ



BACK TO SAMPLE STATISTICS: 
MULTIVARIATE

Application



Multiple variables: covariance matrix
{x↵1, · · · , x↵N}

sample covariance matrix

N samples of the αth variable xα

K different variables xα , labeled by α, β  = {1,…,K}: 

K ⇥K dim since K variables

C↵� ⌘ 1

N � 1

NX

i=1

(x↵i � hx↵i)(x�i � hx�i)

= cov(x↵, x�)



Covariance matrix

• (α,β) element is covariance between xα, xβ. 
• Diagonal of covariance matrix is variance of each 

variable: var(xα) or C(xα, xα).
• K2 entries total, but only half of off-diagonal terms are 

independent because of symmetry (C(xβ, xα)= C(xα, xβ)).
• Thus only (K2-K)/2 + K = K(K+1)/2 independent terms.  

Q’s: How do do linear regression in multivariate case? Will it involve covariance matrix?



ï4 ï3 ï2 ï1 0 1 2 3 4
ï4

ï3

ï2

ï1

0

1

2

3

4

x

y

Covariance example I
x, y independent

x = randn(1000, 1)

y = randn(1000, 1)

C =


0.959 0.009
0.009 1.069

�
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Covariance example III
x, y not independent x = randn(1000, 1)

y = 0.5 ⇤ x+ 0.5 ⇤ randn(1000, 1)

C =


0.907 0.464
0.464 0.469

�



Summary

• Defined sample mean and variance of a 
variable

• Defined covariance between a pair of 
variables

• Solved optimal (least-squares) linear 
regression between two variables in terms of 
mean, covariance

• Covariance matrix: covariance between all 
K(K+1)/2 unique pairs of K variables


