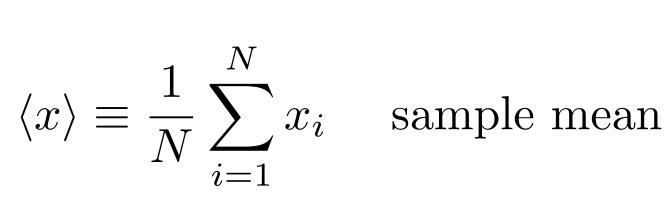
Sample statistics and linear regression

NEU 466M Spring 2020

Mean $\{x_1,\cdots,x_N\}$ N samples of variable x

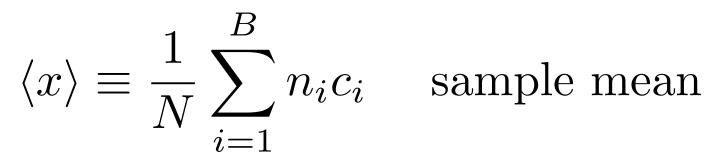


mean(x)

other notation: \bar{x}

Binned version of mean

$$egin{aligned} \{x_1,\cdots,x_N\} & imes ext{ samples of variable x} \ \{c_1,\cdots c_B\}, B ext{ bins} \ \{n_1,\cdots n_B\} ext{ counts per bin} \end{aligned}$$



Variance

$$\{x_1,\cdots,x_N\}$$

$$\langle (x - \langle x \rangle)^2 \rangle \equiv \frac{1}{N-1} \sum_{i=1}^N (x_i - \langle x \rangle)^2$$

sample variance

a measure of the "scatter"/spread of the data around its mean value

homework: show that
$$\langle (x - \langle x \rangle)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2$$

Standard deviation $\{x_1, \cdots, x_N\}$

$$\sqrt{\langle (x - \langle x \rangle)^2}$$
 standard deviation

$$egin{array}{c} {f Covariance} \ \{x_1,\cdots,x_N\}\{y_1,\cdots,y_N\} \ {f N} \, {f Samples \, each \, of \, variables \, x,y} \end{array}$$

$$C(x,y) \equiv \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \langle x \rangle)(y_i - \langle y \rangle)$$

sample covariance

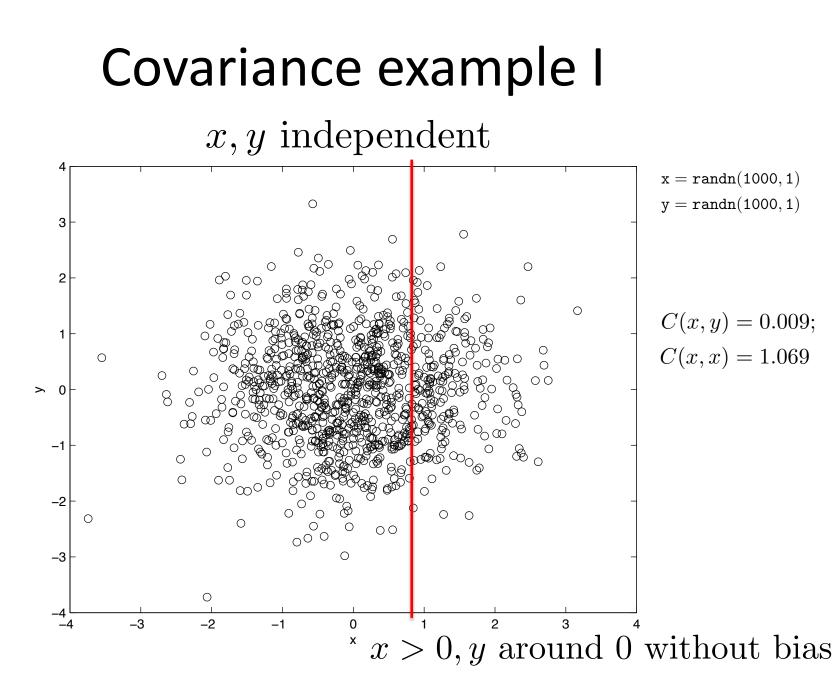
(C(x, x) is simply sample variance of x)

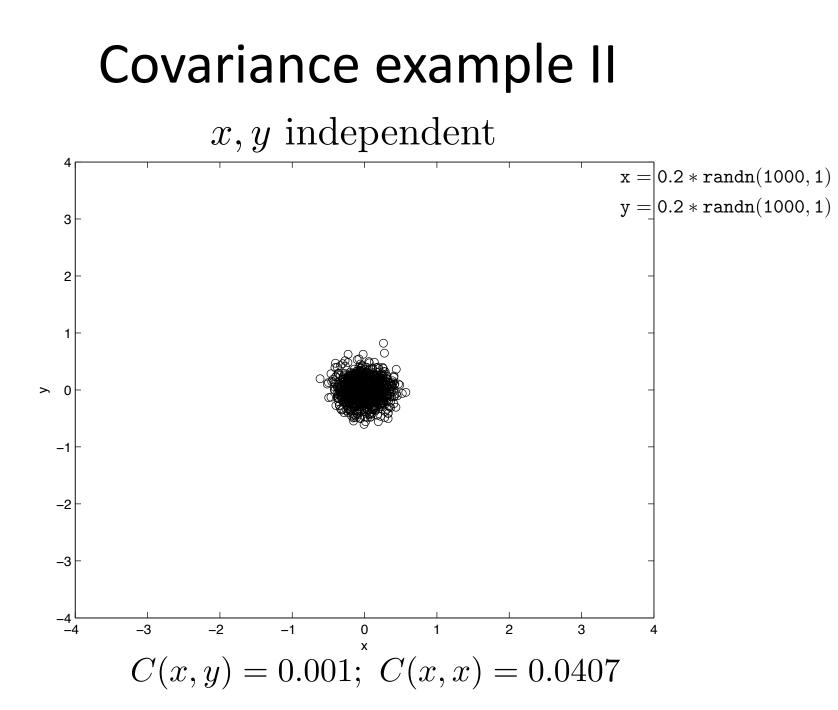
Covariance: what does it measure?

$$C(x,y) \equiv \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \langle x \rangle)(y_i - \langle y \rangle)$$

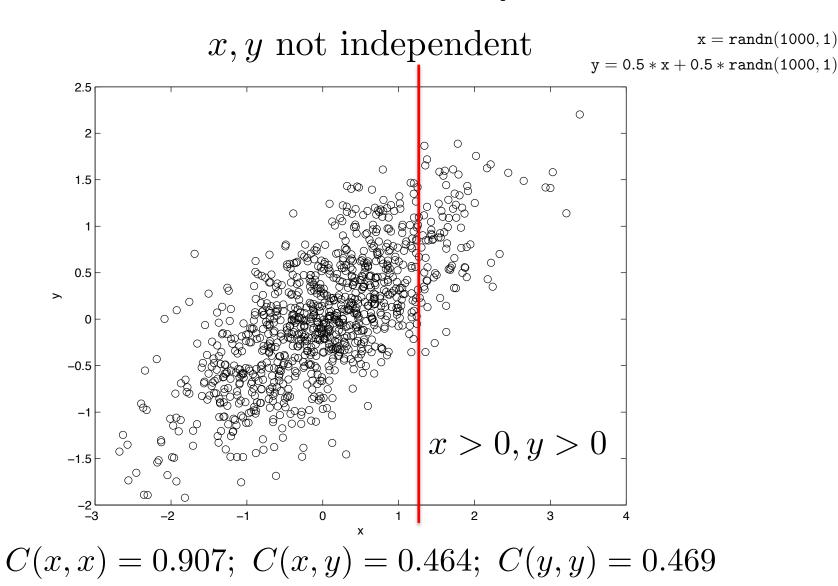
- If x, y both deviate from their means together (both up then both down) then terms in sum are positive, C(x,y) > 0.
- If x,y deviate from their means independent of each other, then terms in the sum are randomly positive and negative, C(x,y) ~=0.
- If x,y deviate from their means in opposite directions, then terms in sum are negative, C(x,y) < 0.

Literally, covariance is a measure of co-variation.





Covariance example III



Alternative notation

- Mean: $\langle x \rangle$, \bar{x} , μ_x , E(x)
- Variance: $\langle x^2 \rangle \langle x \rangle^2, \ \overline{x^2} \overline{x}^2, \ \sigma_x^2, \ var(x), \ C(x,x)$
- Covariance:

$$\langle xy \rangle - \langle x \rangle \langle y \rangle, \ \overline{xy} - \overline{x}\overline{y}, \ \sigma_{xy}^2, \ cov(x), \ C(x,y)$$

Standard deviation

$$\sqrt{\langle x^2 \rangle - \langle x \rangle^2}, \ \sqrt{\overline{x^2}} - \overline{x}^2, \ \sigma_x, \ std(x)$$

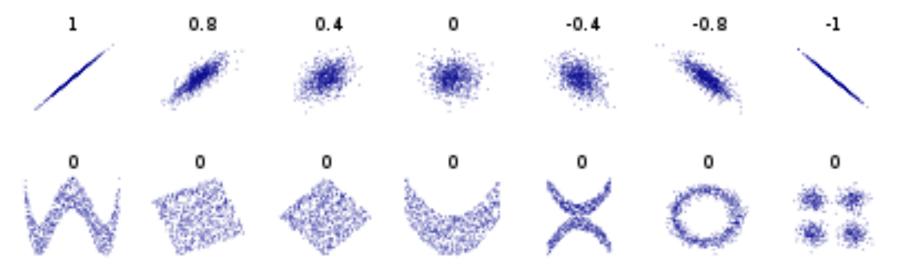
Pearson's correlation coefficient

$$\rho(x,y) = \frac{\langle (x - \langle x \rangle)(y - \langle y \rangle) \rangle}{\sqrt{\langle (x - \langle x \rangle)^2 \rangle \langle (x - \langle x \rangle)^2 \rangle}}$$

$$\rho(x,y) = \frac{C(x,y)}{\sigma_x \sigma_y}$$

shorter-form notation

Pearson's correlation coefficient and covariance only measure *linear dependency*



from: https://en.wikipedia.org/wiki/Correlation_and_dependence

Robust statistics?

- Mean, variance are easy to compute, widely used/useful.
- But not robust: sensitive to outliers.
- More robust alternative to mean: median.

LINEAR REGRESSION IN TERMS OF SAMPLE STATISTICS

Application

Regression: curve-fitting

Scalar explanatory variable (X) and response variable (Y); N samples

$$\{(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)\}$$

$$\tilde{y}(x) = w_0 + w_1 x + \dots + w_M x^M = \sum_{j=0}^M w_j x^j$$

free parameters: (w_0, w_1, \cdots, w_M)

Linear least-squares regression $E = \frac{1}{2} \sum_{n=1}^{N} [\tilde{y}(x_n; \mathbf{w}) - y_n]^2$ $n \equiv 1$ $= \frac{1}{2} \sum_{n=1}^{N} \sum_{n=1}^{M} [\sum_{n=1}^{M} w^{j} x_{n}^{j} - y_{n}]^{2}$ M=1 for linear regression $n = 1 \ i = 0$ 2

$$= \frac{1}{2} \sum_{n=1}^{N} [w^0 + w^1 x_n - y_n]^2$$

To solve for best w⁰, w¹:

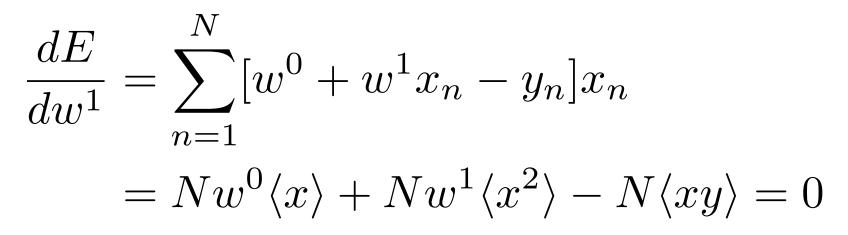
$$\frac{dE}{dw^0} = 0, \quad \frac{dE}{dw^1} = 0$$

$$E = \frac{1}{2} \sum_{n=1}^{N} [w^0 + w^1 x_n - y_n]^2$$

$$\frac{dE}{dw^0} = \sum_{n=1}^{N} [w^0 + w^1 x_n - y_n]$$
$$= Nw^0 + Nw^1 \langle x \rangle - N \langle y \rangle = 0$$

$$w^{0} + w^{1} \langle x \rangle - \langle y \rangle = 0 \qquad (1)$$

$$E = \frac{1}{2} \sum_{n=1}^{N} [w^0 + w^1 x_n - y_n]^2$$



$$w^{0}\langle x\rangle + w^{1}\langle x^{2}\rangle - \langle xy\rangle = 0 \quad (2)$$

$$w^{1} = \frac{C(x, y)}{C(x, x)}$$
 slope
 $w^{0} = \langle y \rangle - w^{1} \langle x \rangle$ $y - \text{intercept}$

In homework: check matlab's polyfit with this optimal expression for linear-least squares fitting.

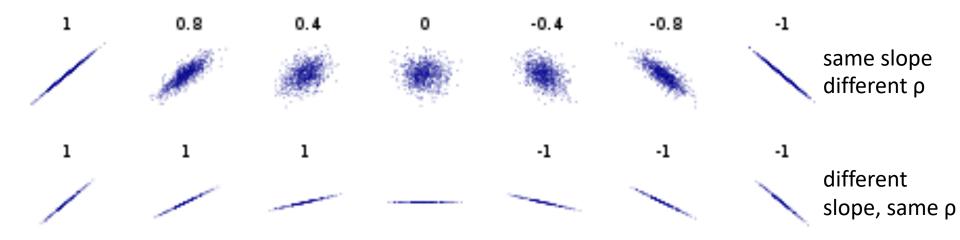
$$w^{1} = \frac{C(x, y)}{C(x, x)}$$
 slope
 $w^{0} = \langle y \rangle - w^{1} \langle x \rangle$ $y - \text{intercept}$

Contrast with w¹: Pearson's correlation
$$\ \
ho(x,y)=rac{C(x,y)}{\sigma_x\sigma_y}$$

Different normalizations:

- Different correlation coefficient for same slope but different amounts of x,y-scatter.
- Same correlation for different slopes and different x,y scatter.
- Correlation: more strongly penalizes y-scatter, more weakly penalizes x-scatter.

Slope versus Pearson's correlation coefficient



iioiii. iiups.//eii.wikipeuia.org/wiki/correlatioii_aiiu_uepeilueilue

BACK TO SAMPLE STATISTICS: MULTIVARIATE

Application

Multiple variables: covariance matrix

 $\{x_{lpha 1},\cdots,x_{lpha N}\}$ N samples of the lphath variable x $_{lpha}$

K different variables x_{α} , labeled by α , $\beta = \{1, ..., K\}$:

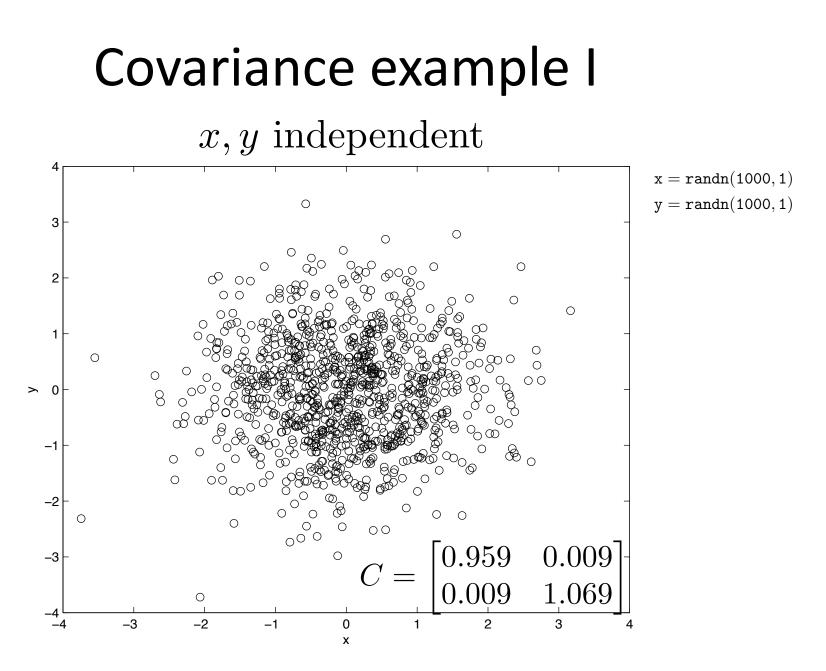
$$C_{\alpha\beta} \equiv \frac{1}{N-1} \sum_{i=1}^{N} (x_{\alpha i} - \langle x_{\alpha} \rangle) (x_{\beta i} - \langle x_{\beta} \rangle)$$
$$= cov(x_{\alpha}, x_{\beta})$$

 $K \times K$ dim since K variables

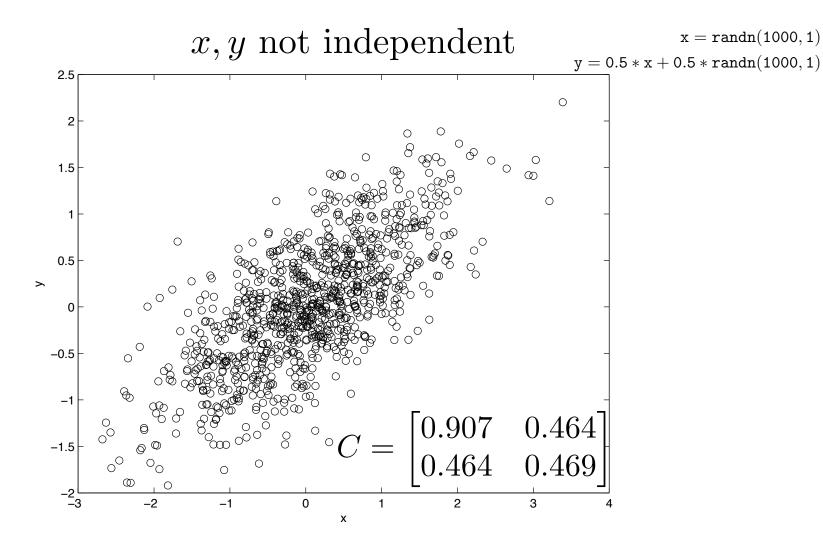
sample covariance matrix

Covariance matrix

- (α,β) element is covariance between x_{α} , x_{β} .
- Diagonal of covariance matrix is variance of each variable: $var(x_{\alpha})$ or $C(x_{\alpha}, x_{\alpha})$.
- K² entries total, but only half of off-diagonal terms are independent because of symmetry (C(x_β, x_α)= C(x_α, x_β)).
- Thus only $(K^2-K)/2 + K = K(K+1)/2$ independent terms.



Covariance example III



Summary

- Defined sample mean and variance of a variable
- Defined covariance between a pair of variables
- Solved optimal (least-squares) linear regression between two variables in terms of mean, covariance
- Covariance matrix: covariance between all K(K+1)/2 unique pairs of K variables