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Algebraic operations on matrices can be interpreted geometrically if one con-
siders coefficients of matrices as coordinates of vectors. However, our geometrical
intuition suggests that vectors “exist” in their own right irrespective of their co-
ordinates. After all, the same vector may have different coordinates in different
coordinate systems. This means that the link between vectorial quantities and ma-
trices is bit more subtle than at first look. This note is to clarify the relationship
between linear algebra, which deals with operation on vectors, and matrix algebra,
which deals with operation on vectors coordinates in a basis system.

1 Vector spaces

Vectors are meant to be multiplied by numbers belonging to a field—typically the
field of real numbersR—and added together in order to form linear combinations.
For instance, our geometrical intuition confirms that given two real numbers α
and β, two plane vectors ~u and ~v can be linearly combined to form a new plane
vector α~u+ β~v. Vectorial space are defined as sets of vectors which are stable by
linear combinations: if two vectors ~v and ~w belong to a vectorial space V , we are
guaranteed that any linear combinations α~u + β~v, α, β ∈ R, also belongs to the
space V . Observe that this definition of a vector space does not require to mention
a coordinate system or to list vectorial components. All is required is that linear
combinations of vectors of V make sense, i.e. are themselves vectors of V .

Suppose now that we are given a single non-zero vector ~v 6= 0~v = ~0 in V . The
only linear combinations we can form are by multiplication by a real number α.
Geometrically, the set of vectors obtained by such an operation lies onto a straight
line directed by ~v and going through the origin ~0. We call that set of vector the
span of ~v

span(~v)
def
= {α~v|α ∈ R} . (1)
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Observe that adding any two vectors from span(~v) gives us another vector from
span(~v). This is the simplest example of a non-zero vectorial space, which is also
a subset of V .

What happens if we consider an additional non-zero vectors ~u? Addressing
that question leads us consider the span of two vectors defined as

span(~u,~v)
def
= {α~u+ β~v|α, β ∈ R} , (2)

which is a vectorial space in its own right and a subset of V . Two cases need to be
distinguished: Either ~u lies along the direction of ~v, i.e. ~u ∈ span(~v), and all linear
combinations of ~u and ~v remains on that straight line, i.e. span(~v) = span(~u) =
span(~u,~v). Either ~u does not lies along the direction of ~v, i.e. ~u /∈ span(~v), and
linear combinations of ~u and ~v defines vectors that span the entire plane defined by
~u and ~v, span(~u,~v) is strictly larger than span(~u) and span(~v). Thus, considering
vector ~u in addition to ~v yields a strictly larger span span(~u,~v) only if ~u /∈ ~v. The
above results easily generalized to an arbitrary number of vectors. For instance,
if we have a family a n vectors, ~v1, ~v2, . . . , ~vn, considering a new vector vn+1

yields a span span(~v1, . . . , ~vn+1) that is strictly larger than span(~v1, . . . , ~vn) only
if vn+1 /∈ span(~v1, . . . , ~vn).

Our geometrical intuition suggests that adding a new vector causes the span
of the resulting family of vectors to increase if it adds one “dimension” to the re-
sulting vectorial space V . To make the notion of dimension precise, we are going
to introduce the notion of free family of vectors. A free family in V is a collec-
tion of vectors ~v1, . . . , ~vn such that no vector ~vi belongs to the span of the other
vectors, span(~vj 6=i). In other words, vectors of a free family are linearly indepen-
dent because no vector can be expressed as a linear combinations of the others. In
particular, we deduce that the larger the free-family, the larger the vectorial space
it spans. Can we find ever larger such vectorial space? It turns out that the an-
swer depends on the vectorial space V we are considering. Suppose V is a plane
mapped via 2 plane coordinates. It is intuitively clear that no free family with more
than three vectors exists. To be linearly independent, a third vector would need
to stick out the plane in the ambient 3-dimensional space. Alternatively, if V is
our ambient space mapped via 3 space coordinates, it can be shown that no free
family with more than four vectors exists. This leads us to define the dimension of
a vector space as follows: the dimension of a vector space V , denoted dimV , is
the maximal number of vectors in a free family contained in V 1.

To define the dimension of a vectorial space, we have resorted to the notion
of free family, which are special families of vectors that are linearly independent

1The dimension of a vectorial space may be infinite but we will only concerned ourselves with
finite-dimensional vectorial space.
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in V . A key property of a free family ~v1, . . . , ~vn is that any vector ~u lying in its
span admit a unique representation as a linear combination: there is a unique set
of numbers α1, . . . , αn such that ~u = α1~v1 + . . . + αn~vn. In a finite-dimensional
space V , free families of maximal size play a very special role and are given a
special name, they are called bases of V . What is special about bases? Their
vectors span the entire space V so that every vector in V can be represented by a
unique linear combination of basis vectors. In other words, they provide us with a
coordinate systems to write down vector components. This is where linear algebra
and matrix algebra connects. Given a vectorial space with dimV = n and a basis
~e, one can represent each vector ~v by its set of components in the basis, v =
(v1, . . . , vn). These components form the matrix representation of ~v in the basis ~e,
which we denote as v = Mat~e(~v). There is a caveat though: vector components
depends on the choice of basis but there is an infinite number of possible choice for
bases. In particular, the same vector admits distinct component representations in
distinct basis and the geometrical interpretation of matrix algebra always requires
to specify a basis of the vectorial space a priori. For the purpose of calculation, not
all basis are equal though and by default matrix operation are thought to be carried
out in the canonical basis, that is the basis ~e1, . . . , ~en for which the coordinates of
the basis vectors are the matrices e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en =
(0, . . . , 1).

2 Matrix representation

There is an intimate relationship between matrices and vector spaces. Actually,
matrices should be viewed as component representations of vectors, and more gen-
erally, as component representations of linear application between vector spaces.
This idea is the major source of confusion in linear/matrix algebra and we will
discuss that idea in the case of 2 dimensional vectorial spaces for ease of exposi-
tion. However, all the arguments generalize to vectorial spaces of arbitrary finite
dimension.

Given a basis ~e = (~e1, ~e2), the matrix representation of a vector ~v is the 1-
column 1-column of its coordinates in the basis ~e. For instance, if ~v = 2~e1 + ~e2,
we can identify the vector ~v with the matrix:

Mat~e(~v) =

[
2
1

]
conv
= v . (3)

For convenience, we denote the matrix representation Mat~e(~v) of ~v simply by v,
where the dependence on the basis is no longer appearing. In a different basis of
vectors ~e ′ = (~e ′1, ~e

′
2), the same vector ~v admits different coordinates, and thus
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a different matrix representation Mat~e ′(~v), which we denote by ~v ′. A new basis
of vectors ~e ′ = (~e ′1, ~e

′
2) is often defined in relation to an old basis (~e1, ~e2), by

specifying the coordinate of the new basis vectors in the old basis. For instance,
we may have ~e ′1 = 3~e1+~e2 and ~e ′2 = 2~e1+3~e2. The coordinates of the new basis
in the old basis actually defines a matrix :

P e′
e = Mat~e(~e

′) =

[
3 2
1 3

]
. (4)

The matrix P~e~e ′ is the change of basis matrix from ~e ′ to ~e because it can be inter-
preted as a change of coordinates. Indeed, in the basis ~e ′, we have

e′1 = Mat~e ′(~e ′1) =

[
1
0

]
and e′2 = Mat~e ′(~e ′2) =

[
0
1

]
, (5)

and we can check that right-multiplying the basis vectors ~e ′ by P e′
e yields the

coordinates of the new basis in the old basis ~e:

P e′
e e ′1 =

[
3 2
1 3

] [
1
0

]
=

[
3
1

]
= Mat~e(~e

′
1) , (6)

P e′
e e ′2 =

[
3 2
1 3

] [
0
1

]
=

[
2
3

]
= Mat~e(~e

′
2) . (7)

Thus, for a generic vector ~v ′ = v′1~e
′
1+v

′
2~e
′
2, the old coordinates v can be obtained

from the new ones v′ by

P e′
e v′ = P e′

e (v′1e
′
1 + v′2e

′
2) (8)

= v′1P
e′
e e′1 + v′2P

e′
e e′2 (9)

= v′1Mat~e(~e
′
1) + v′2Mat~e(~e

′
2) (10)

= Mat~e(v
′
1~e
′
1 + v′2~e

′
2) (11)

= Mat~e(~v) (12)

= v (13)

Unfortunately, we are not really interested in the above change of coordinates since
we are looking for the new coordinate v′ in term of the old ones v. Luckily, acheiv-
ing this change of coordinates only requires to introduce the inverse of P e′

e
2, which

is the change of basis matrix from ~e to ~e ′, and which satisfies:

v′ =
(
P e′
e

)−1
v = P e

e′v . (14)

2Change of basis matrix are always invertible
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Thus, we have a simple recipe to find the new coordinates in term of the old coor-
dinates.

We just saw that matrix representations of vectors are 1-column or 1-row ma-
trices listing vectorial coordinates, which depend on the choice of basis. In the
following, we focus on square matrices and show that they can be viewed as rep-
resentation of linear applications f from a vectorial space V into itself. Although
outside the scope of this note, this interpretation of matrices as representation of
linear functions extends to non-square matrices at the cost of considering linear
functions between distinct vectorial spaces, f : V → W , with possibly different
dimensions, i.e. such that dimV 6= dimW .

What are linear applications and how do they relate to matrices? An linear
application f : V → V is a function that takes a vector ~v in V to a vector f(~v)
in V while satisfying a linear property. A function f is linear if it maps linear if
it “preserves” linear combinations: f(α~v + β ~w) = αf(~v) + βf(~w). An impor-
tant consequence of the linearity property is that f(V ), the output space of f is a
vectorial space included in V . Moreover, if we know the image vectors f(~vi) of a
basis of ~vi, we can express all vectors of f(V ) as linear combinations of the f(~vi).
In other words, we can characterize the action of f in V by focusing on how the
application f transform a basis of V . This fact is the essence of the link between
linear application and matrices. Actually, we have already seen this link without
mentioning it explicitly when discussing change of basis. Indeed, when discussing
the right multiplication of the coordinates v′ by the matrix P e′

e —which is a linear
operation—, we have interpreted the result v as the coordinates of the same vector
but in a different base. In term of linear application, this means that P e′

e represents
the application that takes a vector ~v to the same vector ~v, which the identity appli-
cation id : V → v. However, the matrix P e′

e is clearly different than the identity
matrix. The reason for this is that the change of basis matrix is the representation
of the identity application id : V → V when considering the input space equipped
with the base ~e ′ and the output space with the base ~e.

The above discussion about changes of basis may seem a bit confusing at first
sight. However, the message of that discussion is simple. Just as vectors exist
in their own rights, linear applications between vectorial spaces also exist in their
own rights and admit matrix representations. These matrix representations also
depend on the bases choice to represent vectors both in the input and in the output
spaces of the linear applications3. To make things more concrete, we conclude
this discussion by considering a familiar linear transformation: rotations in the 2-
dimensional space. In the canonical coordinate of the planes, coordinates of vectors

3There are two choices of bases. However, it is often the case that we chose the same basis in the
input and output space when possible.
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~v can be parametrized in terms of a radius r and an angle θ with respect to the first
basis vector:

v = (r cos(θ), r sin(θ)) . (15)

A rotation by an angle ψ, denoted Rotψ, sends a vector ~v onto an image vector
~vψ = Rotψ(~v) with new coordinates vψ = (r cos(θ+ψ), r sin(θ+ψ)). Although
we express the action of Rotψ via coordinates, it is intuitively clear that the relation
~vψ = Rotψ(~v) is independent of the choice of coordinates. Moreover, one can
show that Rotψ is a linear application in the plane.

What are the matrix representations of Rotψ in a given base? Let us start in
the canonical base ~e. Using trigonometric inequalities, we can show that vψ, the
coordinates of the output vector ~vψ in the canonical base ~e, satisfy

vψ =

[
r cos(θ + ψ)
r sin(θ + ψ)

]
(16)

=

[
r cos(θ) cos(ψ)− r sin(θ) sin(ψ)
r sin(θ) cos(ψ) + r cos(θ) sin(ψ)

]
(17)

=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
︸ ︷︷ ︸

Rψ

[
r cos(θ)
r sin(θ)

]
︸ ︷︷ ︸

v

, (18)

where v are the coordinates of the input vector ~v in the canonical base ~e. That’s it.
We just found the matrix representation of Rot(ψ) in the canonical basis ~e:

Rψ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
= Mat~e(Rot(ψ)) . (19)

What about the matrix representations of Rotψ in another base, say ~e ′? The answer
to that question is made a lot easier than it seems by the availability of the change
of basis matrix P e

e′ = P . Indeed, we can use the matrix P and its inverse to go
back and forth between the coordinates in the basis ~e and ~e ′. In particular, we have

v′ψ = Pvψ = PRψv = PRψP
−1︸ ︷︷ ︸

R′ψ

v′ . (20)

Stated otherwise, the matrix representation of Rot(ψ) in the canonical basis ~e ′ is
given by the following recipe: R′ψ = Mat~e ′(Rot(ψ)) = PRψP

−1. Thus, we con-
firm that different basis yields different matrix representations of the same linear
application. Now, it is worth mentioning that not all representations are equal: we
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usually favor “special” representations, e.g. matrices that are parsimonious with
respect to the number of non-zero coefficients, because these matrices are more
convenient to interpret and manipulate. As a consequence, a recurrent theme of
linear algebra is to find bases for which the representation of a linear application is
“special”.

3 Special matrices

Here follow a few examples of special matrices.

3.1 Elementary matrix

Elementary matrices are matrices for which all entries are zero except one that has
unit value. Elementary matrix can be labelled by the indices of that unit entry, e.g.
E21 is the elementary matrix that has a one in the second row and the first column.
When used to right-multiply vectors, E21 return the vector that is zero everywhere
except on the second row where it takes value of the first component of the original
vector:  0 0 0

1 0 0
0 0 0

 v1
v2
v3

 =

 0
v1
0

 . (21)

When used to left-multiply vectors, E21 returns the vector that is zero everywhere
except on the first row where it takes value of the second component of the original
vector:

[
v1 v2 v3

]  0 0 0
1 0 0
0 0 0

 =
[
v2 0 0

]
. (22)

These observations generalize to matrix multiplication. When used to right-multiply
matrices, E21 returns the matrix that is zero everywhere except on the second row
where it takes value of the first row of the original vector: 0 0 0

1 0 0
0 0 0

 r1
r2
r3

 =

 0
r1
0

 . (23)

When used to left-multiply matrices, E21 returns the vector that is zero everywhere
except on the first column where it takes value of the second column of the original
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vector:

[
c1 c2 c3

]  0 0 0
1 0 0
0 0 0

 =
[
c2 0 0

]
. (24)

Every matrix can be seen as linear combinations of elementary matrices. Moreover,
elementary matrices can be combined to generate combinatorial operation such as
switching rows or column, and more generally to generate any permutations of
entries.

3.2 Diagonal matrix

Diagonal matrices only have nonzero entries on the diagonal. The identity matrix I
is a diagonal matrix with all diagonal entry equal to one such that for all v, we have
Iv = vI = v. When used to right-multiply matrices, diagonal matrices multiple
rows by the corresponding diagonal coefficients: λ1 0 0

0 λ2 0
0 0 λ3

 r1
r2
r3

 =

 λ1r1
λ2r2
λ3r3

 (25)

When used to left-multiply matrices, diagonal matrices multiple columns by the
corresponding diagonal coefficients:

[
c1 c2 c3

]  λ1 0 0
0 λ2 0
0 0 λ3

 =
[
λ1c1 λ2c2 λ3c3

]
(26)

Linear applications that are represented by a diagonal matrix in a basis ~e have a very
simple geometrical interpretation. These applications are scaling operation with
potentially different scaling along each basis vectors ~ei indicated by the diagonal
entries λi. It turns out that linear applications in finite dimensional space over the
field of complex numbers are generally diagonalizable. This means that we can find
a basis for which the matrix representation of the linear application is diagonal with
potentially complex entries. Equivalently, this means that matrices can generally
be reduced to complex-valued diagonal matrices.

3.3 Orthogonal matrix

Orthogonal matrices represent another set of linear applications that can easily
be interpreted geometrically. Orthogonal matrices have the property that their
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columns form an orthonormal systems in the canonical basis. This means that
the inner product of distinct column is zero while the length of each column vector
is one. This is conveniently summarized by writing

OTO =

 cT1
cT2
cT3

 [ c1 c2 c3
]

(27)

=

 cT1 c1 cT1 c2 cT1 c3
cT2 c1 cT2 c2 cT2 c3
cT3 c1 cT3 c2 cT3 c3

 (28)

=

 1 0 0
0 1 0
0 0 1

 (29)

Thus, we have OTO = I , which is equivalent to saying that orthogonal matrices
are invertible with inverse O−1 = OT . The geometric interpretation is that orthog-
onal matrices represents linear application that send the canonical basis, which is an
orthonormal basis of vectors, to another orthonormal basis of vectors. This means
that orthogonal matrices represent rigid transformations that are generalizations of
rotations4.

4Orthogonal matrices represent applications that are composition of rotation and reflection oper-
ations.
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