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This note is an introduction to the key properties of Poisson processes, which
are extensively used to simulate spike trains. For being mathematical idealizations,
Poisson processes rely on some simplifying assumptions that limit their scope of
application. The best way to understand these limitations is perhaps by construct-
ing the Poisson process gradually starting from the intuitively clear situation of
independent spiking in a finite number of time bins. After following this approach
to define Poisson processes, we conclude by discussing various methods to simu-
late Poisson processes numerically.

1 Independent spiking in time bins

We partition the time interval [0, T ] into n identical time bins Bi, 1 ≤ i ≤ n.
We use this partition to represent spike trains as binary sequences Xi, encoding
the presence (Xi = 1) or the absence of a spike (Xi = 0) in a time bin Bi.
Such a representation implicitly assumes that the bins duration ∆t = T/n is short
enough to ensure that at most one spike may occur in a given time bin. We are
going to model the spike generation in these bins as a random process with the
least possible structure. Specifically, we are going to assume that a (single) spike
may be generated independently in each bin with the same probability q, 0 ≤
q ≤ 1. Simulating such a binary vectorX in Matlab is easily achieved by using the
command x = double(rand(1,n)<q), where double is utilized to convert
logical values into numerical values. In this section, we introduce two natural spike
trains’ statistics and their corresponding distributions: 1) the spike counts over a
finite time windows, which follows a binomial distribution and 2) the inter-spike
intervals (ISI) for infinite overall duration (T → ∞), which follows a geometric
distribution.
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1.1 Binomial distribution

The number of spikes occurring in n bins is a random integer K satisfying 0 ≤
K =

∑N
i=1Xi ≤ n. By independence of the Bernoulli variables Xi, the probabil-

ity of observing k spikes in n bins is given by the binomial distribution

P(K = k) = p(k) =

(
n

k

)
qk(1− q)n−k ,

where the binomial coefficients
(
n
k

)
are counting the number of combinations of

k spikes in n bins. Observe that the binomial distribution is indeed a probability
distribution as we have

n∑
k=0

p(k) =
n∑
k=0

(
n

k

)
qk(1− q)n−k = (q + 1− q)n = 1 .

The binomial probability distribution function is available in Matlab via the com-
mand binopdf(k,n,q). You can check that the following code produces an
histogram that closely matches the binomial distribution:

nsample=1000;
n=100;
q=0.02;
k=zeroes(1,nsample);
for i=1:nsample

k(i)=sum(double(rand(1,n)<q));
end
h=hist(k,0:n)/nsample;
figure()
bar(h);
hold on
plot(binopdf(0:n,n,q))
hold off

Matlab can directly generates binomial samples using the command binornd(n,q).
The mean and the variance of the binomial distribution are obtained from the mean
and the variance of the independent Bernoulli variables Xi

E(K) = E

(
n∑
i=1

Xi

)
=

n∑
i=1

E(Xi) = nq ,

V(K) = V

(
n∑
i=1

Xi

)
=

n∑
i=1

V(Xi) = nq(1− q) .

2



These formula are intuitively clear: the expected number of spikes increases lin-
early with the duration of the time window, while the variability of the spike counts
is maximum when it is equally likely to spike or not. Moreover, if q = 0 or q = 1,
there is no randomness since we only get 0 or 1 and the variance vanishes.

1.2 Geometric distribution

The number of bins separating two consecutive spikes is a measure of the ISI length
L, which is a positive random integer number. However, by contrast with spike
counts K, the length L is not well-defined in a finite time interval [0, T ]. For
this reason, we are now considering an infinite time window (T = ∞). Then by
independence of the the Bernoulli variables Xi, the probability to observe l − 1
consecutive bins with no spikes before observing a spike in the l-th bin is

P(L = l) = p(l) = (1− q)l−1q ,

which is the same as the geometric probability function of parameter q. This proba-
bility function is given in Matlab by the command geopdf(l,q). You can check
that the following code produces an histogram that closely matches the geometric
distribution:

n=100000;
q=0.02;
spikes=double(rand(1,n)<q);
ISI=diff(spikes(find(spikes==1)));
M=max(ISI);
N=length(ISI);
h=hist(k,0:M)/L;
figure()
bar(h);
hold on
plot(geopdf(0:M,q))
hold off

Matlab can directly generates geometric samples using the command geornd(q).
Note that this distribution is defined over the range of all integers to allow for the
possibility of very long ISI. Still, the distribution is normalized to one as expected
for a probability function:

∞∑
l=0

p(l) =

∞∑
l=1

(1− q)l−1q =
q

1− (1− q)
= 1 .
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The mean and the variance of the geometric distribution of parameter q can be
computed via many different routes. Perhaps the most direct route is the following

E(L) =
∞∑
l=1

l(1− q)l−1q ,

= −p
∞∑
l=1

d

dp

(
(1− q)l

)
,

= −p d
dq

( ∞∑
l=1

(1− q)l
)
,

= −p d
dq

(
1

q

)
,

=
1

q
,

where we use the fact that we can interpret the mean ISI as the derivative of a
simple function with respect to the parameter q. A similar calculation yields the
variance:

V(L) =
1− q
q2

.

The key aspect of the above formulae is that the expected ISI is inversely propor-
tional to the spiking probability, which is in keeping with our intuition. The less
probable spiking events are, the longer silent time periods in between these events
and the mean and the variance actually diverge when q → 0.

2 Limit of infinitely small bins

Simulating spike trains as binary sequences of Bernoulli variables Xi has led us to
consider two related statistics: spike counts and ISIs. In the previous section, we
have shown that these statistics obey simple probability distributions that crucially
depends on the bin spiking probability q. The spiking probability q can be seen as
the rate of spiking events per bin. In the following, we make use of this observa-
tion to make our model independent of the binning size by considering the limit
of infinitely short binning intervals ∆t → 0. Taking the binomial distribution and
the geometric distribution through that limit will lead us to introduce two impor-
tant probability distributions: the Poisson distribution defined for positive integers
(counts) and the exponential distribution defined for all positive numbers (time).
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2.1 Poisson distribution

We want to establish the distribution of spike counts occurring in a finite time
window [0, T ] and in the limit of small bins ∆t → 0. Interpreting q as the rate
of spiking event per bin suggests to introduce r, the rate of spikes per unit of time
which satisfies q = r∆t = rT/n. For finite bin sizes, the spike-count probability
is given by the binomial distribution

P(K = k) = p(k) =

(
n

k

)(
rT

n

)k (
1− rT

n

)n−k
,

and considering the limit of small bins is equivalent to take the limit n→∞ in the
above formula. To evaluate this limit, we first rearrange the terms to get

p(k) =
n!

k!(n− k)!

(
rT

n

)k
e(n−k) ln(1−

rT
n ) ,

=
n!

(n− k)!nk
(rT )k

k!
e(n−k) ln(1−

rT
n ) ,

=
n

n

n− 1

n
. . .

n− k + 1

n

(rT )k

k!
e(n−k) ln(1−

rT
n ) .

For fixed k, we have the limits

(n− k) ln

(
1− rT

n

)
−−−→
n→∞

−rT ,

n

n

n− 1

n
. . .

n− k + 1

n
−−−→
n→∞

1 ,

so that the limit probability to count k spikes in a time window [0, T ] is given by

p(k) =
(rT )k

k!
e−rT ,

which is that of a Poisson distribution of parameter rT . This parameter is in fact
the mean number of spikes in a time window of duration T with spiking rate r:

E(K) = lim
n→∞

E

(
n∑
i=1

Xi

)
= lim

n→∞

n∑
i=1

E(Xi) = lim
n→∞

n
rT

n
= rT .

A similar calculation shows that the variance of the Poisson distribution is equal to
its mean:

V(K) = lim
n→∞

V

(
n∑
i=1

Xi

)
= lim

n→∞

n∑
i=1

V(Xi) = lim
n→∞

n
rT

n

(
1− rT

n

)
= rT .
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The fact that E(K) = V(K) is an important property of the Poisson distribu-
tion that can easily be checked on time series data. Matlab can directly generates
Poisson-distributed samples using the command poissrnd(q), where q is the
mean count.

Another important property of Poisson variables is that the sum of two inde-
pendent Poisson variables K1 and K2, say with parameters r1T and r2T , is still a
Poisson variable but of parameter (r1 + r2)T . To see why, we first have to realize
that the probability distribution of the sum of two independent variables K1 and
K2 can be computed as a convolution of their individual probability distributions
p1 and p2. Indeed, we have:

P(K1 +K2 = k) = p(k) =
k∑

k1=1

p1(k1)p2(k − k2) = (p1 ? p2)(k)

From there, we can use the formula for Poisson distributions together with the
binomial law to show that

(p1 ? p2)(k) =
k∑

k1=1

(r1T )k1

k1!
e−r1T

(r2T )(k−k1)

(k − k1)!
e−r2T

=
k∑

k1=1

1

k1!(k − k1)!
(r1T )k1 (r2T )(k−k1) e−(r1+r2)T ,

=
e−(r1+r2)T

k!

k∑
k1=1

(
k

k1

)
(r1T )k1 (r2T )(k−k1) ,

=

(
(r1 + r2)T

)k
k!

e−(r1+r2)T .

2.2 Exponential distribution

We want to establish the distribution of ISIs over an infinite length time window
and in the limit of small bins ∆t→ 0. For finite bin size, measuring ISIs in unit of
bins leads to considering geometrically distributed random integers L. In the limit
of small bins ∆t→ 0, ISIs take increasingly larger values and working directly on
the distribution of L is not well posed when considering the limit ∆t → 0. The
variable that is suited to our investigation is τ , the duration of the ISI measured
in time unit, which satisfies τ = LT/n. Although this variable is defined as a
multiple of the bin size T/n for finite n, we expect τ to be defined on the set of
all positive real numbers in the limit n → ∞. This observation suggests to take
a slightly different approach than for the Poisson distribution by working on the
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cumulative function rather than on the probability function. For finite bin size, the
ISI obeys the geometric cumulative probability function given by:

P [L ≤ λ] =

λ∑
l=0

p(l) =

λ∑
l=1

(1− q)l−1q =
1− (1− q)λ

1− (1− q)
=

1− (1− q)λ

q2
.

Just as for the Poisson distribution, we can express in the above expression the bin
spiking probability q in terms of the rate of spiking per unit of time r via q = rT/n.
Correspondingly, λ, the ISI length in bin size can also be written in terms of the
ISI length in unit of time t via λ = nt/T . Thus, we can write the cumulative
probability distribution for the ISI measured in unit of time and take the limit of of
small bins ∆t→ 0 to obtain:

P [τ ≤ t] = P [L ≤ λ] = 1− (1− q)λ = 1−
(

1− rT

n

)nt
T

−−−→
n→∞

1− e−rt . (1)

Observe that in the limit of small bins ∆t → 0, the resulting cumulative distribu-
tion is that of an exponential distribution and is independent of T . The exponential
probability distribution

p(t) =
d

dt
P [τ ≤ t] =

e−rt

r
, (2)

is given by the command exppdf(t,r), while exponential samples are gen-
erated by using the command exprnd(r). The mean and the variance of the
exponential distribution can be recovered from the mean and the variance of the
geometric distribution of parameter q by writing q = rT/n and taking the limit
n→∞:

E[τ ] = lim
n→∞

E [LT/n] = T lim
n→∞

E [L]

n
= T lim

n→∞

1

nq
= 1/r ,

V[τ ] = lim
n→∞

V [LT/n] = T 2 lim
n→∞

V [L]

n2
= T 2 lim

n→∞

1− q
n2q2

= 1/r2 .

Perhaps the most important property of the exponential distribution is the so-called
“memoryless” property. Informally stated, this property tells us that at any given
time, the time one has to wait for the next spike to occur is independent from
the time when the last spike took place. More formally, suppose with no loss of
generality that at time s, the last spike occurred at time 0. Then the probability that
the next spike occurs after a duration t is

P [τ > t+ s|τ > s] =
P [τ > t+ s]

P [τ > s]
=
e−r(t+s)

e−rs
= e−rt = P [τ > t] ,
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which is independent of s as announced.
By contrast with Poisson variables, the sum of two independent exponential

times, say τ1 and τ2 with same rate r, is not an exponential variable. To see why,
remember that by independence, the probability distribution p(2) of τ1+τ2 is given
by the convolution of an exponential distribution with itself:

p(2)(t) =

∫ t

0
re−rsre−r(t−s) ds = r2e−rt

∫ t

0
ds = r2te−rt .

The above probability distribution, which represents the time separating two con-
secutive spikes, is that of a Gamma distribution. Gamma distributions gives the
general form of the distribution of times separating n consecutive spikes as:

p(n)(t) =
r(rt)n−1e−rt

(n− 1)!
.

3 Poisson spiking model

Now that we are equipped with the Poisson distribution and the exponential dis-
tribution, we have all the ingredients to define Poisson processes, which are the
simplest stochastic point processes amenable to represent spike trains in contin-
uous time. Poisson processes over the time axis are entirely determined by the
time-dependent rate of spiking r(t). Although this rate is in general a function of
time, we only show elementary properties of Poisson processes for constant rate
of firing r, i.e. for homogeneous Poisson processes. However, we will state core
formulae for the generic case of an inhomogeneous Poisson process

3.1 Definition via Poisson distributions

Poisson processes are point processes that count the number of spikes in an given
time window of the time axis. As such, a Poisson process N maps a time interval,
e.g. (s, t], with s < t, onto a random positive integer variable denoted N(s, t] The
variable N(s, t] represents the number of spikes occurring in (s, t]. The defining
properties of a Poisson process with unit rate is that the random count N(s, t] fol-
lows a Poisson distribution with mean t−s and that for times s < t < u, the counts
N(s, t] and N(t, u] are independent. These are natural properties if we consider a
Poisson process as the limit of independent spiking in time bins of vanishing du-
rations. Indeed, the limit of a binomial distribution is then a Poisson distribution
of equal mean and the numbers of spikes happening in disjoint time windows are
independent by construction (the presence or absence of a spike is decided by an
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independent coin toss). When the time interval starts in 0, the convention is to
write N(0, t] = Nt so that we have N(s, t] = Nt −Ns.

Why is a Poisson process different than a Poisson variable? The answer is
that a Poisson process Nt is a collection of Poisson variables indexed by time t
and organized in a fashion that is consistent with time ordering. To understand
this point, consider two time windows (s, t] and (u, v] with s < t and v < u. If
t < u, the time windows are disjoints, i.e. (s, t] ∩ (u, v] = ∅, and spikes happen
independently in each time windows. Suppose now that u < t, then the time
windows are overlapping, i.e. (s, t]∩ (u, v] 6= ∅, and we expect the counts N(s, t]
and N(u, v] to be dependent. Indeed, if many spikes happen in (s, t], we expect
that some of these spikes happens in (s, t] ∩ (u, v], which means that many spikes
are also likely to happen in (u, v]. Poisson processes capture this dependence that
can be quantified via the covariance beetwen N(s, t] and N(u, v].

To show this, we denote the overlap between time windows as (s, t] ∩ (u, v] =
B with length b, and from there, we define new time windows A = (s, t] \B = A
and C = (u, v] \ B with length a and b, respectively. The spike counts in time
windows A, B, and C, denoted by Na, Nb Nc, are independent Poisson variables
of parameters a, b, and c, respectively, and satisfy Ns,t,= Na + Nb and Nu,v =
Nb +Nc. Moreover, we have:

E [(Na +Nb)(Nb +Nc)] = E [NaNb] + E [NaNc] + E
[
N2
b

]
+ E [NbNc] ,

= E [Na]E [Nb] + E [Na] [Nc] + E
[
N2
b

]
+ E [Nb] [Nc] ,

= ab+ ac+ E
[
N2
b

]
+ bc ,

= E
[
N2
b

]
− E [Nb]

2 + ab+ ac+ b2 + bc ,

= V [Nb] + (a+ b)(b+ c) .

Thus, the covariance between Ns,t and Nu,v can be computed as

Cov(Ns,t, Nu,v) = E [Ns,tKu,v]− E [Ns,t]E [Nu,v] ,

= E [(Na +Nb)(Nb +Nc)]− E [Na +Nb]E [Nb +Nc] ,

= V [Nb] + (a+ b)(b+ c)− (a+ b)(b+ c) ,

= V [Nb] ,

= min(t, v)−max(s, u) ,

showing that the covariance between overlapping time windows is equal to the
mean number of spikes occurring in the overlapping portion of both windows.
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3.2 Definition via exponential distributions

The above definition of Poisson processes may seem a little bit abstract. In par-
ticular, it may not be apparent how one can estimate the probability of a specific
spike trains 0 ≤ t1 < t2 < . . . < tn ≤ T . This remark leads us to define Poisson
processes in a different, albeit entirely equivalent fashion, by specifying the proba-
bility distribution of spike trains. From our analysis of ISI statistics, we know that
consecutive spikes are separated by independent exponentially distributed (memo-
ryless) times. Thus, denoting t0 = 0, we have

p(t1, . . . , tn) =

n∏
i=1

p(ti|ti−1)P(tn+1 > T |tn) ,

=

n∏
i=1

re−r(ti−ti−1)e−r(T−tn) ,

= rne−rT ,

which is independent of the spike timing and only depends on the spike count
n. What this result tells us is that if one assumes a given spike count n, spiking
times are uniformly distributed in the considered time window. At this point, it is
important to remember that we have assume a specific time ordering 0 ≤ t1 <
t2 < . . . < tn ≤ T , which implies that the probability for the spike train to have n
spikes is ∫ T

0
dt1

∫ T

t1

dt2 . . .

∫ T

tn

dtn−1p(t1, . . . , tn)

=

(∫ T

0
dt1

∫ T

t1

dt2 . . .

∫ T

tn

dtn−1

)
rne−rT ,

=
rn

n!
e−rT ,

which is the probability of observing n spikes from a Poisson distribution with
parameter rT .

3.3 Inhomogeneous Poisson processes

The construction of homogeneous Poisson processes directly carries out to the
case of a time-dependent rate function r. To understand why, one just has to
realize that all the arguments developed in this note are valid if one has con-
sidered a bin-dependent spiking probability qi in defining independent spiking
in time bins. From there, the time-dependent spiking rate can be recovered via
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r(t) = limn→∞ qnt/T (n/T ). For inhomogeneous Poisson processes, the mean
and covariance formulae reads

E [Ns,t] =

∫ t

s
r(u) du , and Cov(Ns,t, Nu,v) =

∫ max(s,u)

min(t,v)
r(w) dw ,

and the probability to observe a spike train 0 ≤ t1 < t2 < . . . < tn ≤ T is

p(t1, . . . , tn) =
n∏
i=1

r(ti)e
−

∫ T
0 r(s) ds .

3.4 Simulation of Poisson processes

Homogeneous Poisson processes are easily simulated by generating successive ex-
ponential ISIs. For instance, given a time window [0, T ], the following code gen-
erate a spike train with firing rate r:

T=1000;
t=0;
time=[];
while (t<T)

isi=exprnd(r);
t=t+isi;
if (t<T)

time=[time,t];
end

end

Another method is to simulate first the number of spiking events n taking place
in the time window [0, T ] and then to sample uniformly points within that time
window:

T=1000;
n=poissrnd(rT)
time=zeros(n);
for i=1:n

time(i)=rand()*T;
end

Scaling all the time by a scalar value 1/a transform the original spike train
Nt defined over [0, T ] into a spike train Nt/a defined on [0, T/a] but with rate
ar. Thus, one can produce homogeneous Poisson processes of any rates by simple
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time scaling of Poisson processes with unit rate. This idea can be extended to
generate inhomogeneous Poisson processes with fluctuating rate r(t) at the cost
of considering nonlinear time scaling. This is done by considering the function
R(t) =

∫ t
0 r(s) ds, which represents the mean number of spikes in the time window

(0, T ] and defines a well-posed change of time if the rate function remains positive
finite. Then, R is a one-to-one function with inverse function R−1. One can check
that if Nt is a Poisson process with unit rate, the rescaled process NR−1(t) is an
inhomogeneous Poisson process with rate r(t). For instance, if r(t) = a, we have
R(t) = at and NR−1(t) = Nt/a as expected.

Another method that is extensively used to generate inhomogeneous Poisson
process is called “thinning”. It assumes that the rate function r admits an upper
bound over the considered time window: M ≥ r(t), 0 ≤ t ≤ T . Then, one can
always simulate an homogeneous Poisson process with rate M over [0, T ]. Such a
process has too many events as for generic time t, we have M > r(t). The idea of
thinning is to find a rule to eliminate some of the spiking events of the homogenous
Poisson process with rate M so that the remaining events form the realization of
our target Poisson process with rate r(t). This is handily done by observing the
following rule: keep spiking events occurring at time t with probability r(t)/M
and independently of anything else:

T=1000;
n=poissrnd(M)
time=[];
for i=1:n

t=rand()*T;
if (rand()<r(t)/M)

time=[time,t];
end

end
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