
Syllabus for M394C - Mathematical neuroscience

Topics in neural dynamics, information theory,
and machine learning

1 Course information

Instructor: Thibaud Taillefumier, ttaillef@austin.utexas.edu
Lectures: Tuesday and Thursday, 9:30AM-11:00AM, RLM 10.176.
Office hours: Monday 2:00PM-3:00PM, Wednesday 12:00PM-1:00PM:, RLM 10.148
Webpage: http://ctcn.utexas.edu/mathematical-neuroscience

2 Course objective

This course is intended for mathematicians interested in neuroscience and mathematically-inclined
computational neuroscientists. The emphasis will be primarily on the analytical treatment of neuro-
science-inspired models and algorithms. The objective of the course is to equip students with a solid
technical and conceptual background to tackle research questions in mathematical neuroscience.

The course will be structured in three blocks: neural dynamics, information theory, and machine
learning.

2.1 Neural dynamics

Neural computations emerge from myriads of neuronal interactions occurring in intricate networks
that have evolved over eons of time. Due to the obscuring complexity of these networks, we can
only hope to uncover principles for neural computations through the lens of mathematical model-
ing and analysis. The main theoretical challenge is to relate quantitatively structure and activity in
a tractable way, i.e. to uncover hierarchies of low-dimensional representations for the activity of
high-dimensional neural systems. In this block, we will present attempts made in that direction while
introducing the mathematical formalisms associated to classical models of neural dynamics. Specifi-
cally: i) We will characterize distinct dynamical regimen of neural activity in deterministic single-cell
models and in deterministic population models. ii) We will analyze neural variability in stochastic
neural networks modeled via point-processes (i.e. intensity-based models) or via diffusion processes
(i.e. integrate-and-fire models). iii) We will examine network dynamics in various simplifying mean-
field limits, including the traditional thermodynamics mean-field limits but also the replica mean-field
limit. To complete this program, we will mostly rely on tools from the theory of dynamical systems
and stochastic calculus (bifurcation theory, Markovian and stationary analysis).
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2.2 Information theory

To elucidate brain structure conceptually, it is tempting to look for “design principles” that would
guide the development and the evolution of neural systems. Such a putative design principle is of-
fered by the “efficient coding hypothesis”, which states that sensory systems have evolved to opti-
mally transmit information about the natural world given limitations on their biophysical components
and constraints on energy use. In this block, we will introduce the theoretical framework suitable
for investigating the efficient coding hypothesis from a mathematical standpoint. i) We will start by
reviewing the foundations of Shannon’s information theory and its modern application to information
processing in neural-network models: a) We will present classical information-theoretic optimization
results, e.g. rate-distortion theory, and some of their more recent variants, e.g. information bottle-
neck, as well as the corresponding optimization algorithms. b) We will introduce maximum-entropy
methods for statistical inference about neural networks in the framework of information geometry.
ii) Then, we will explore some outstanding information-theoretical problems in neuroscience (chan-
nel optimization, entropy production). This block will rely on results from constrained optimization
theory (essentially the KKT conditions) and will require some elementary notions of variational and
differential calculus.
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2.3 Machine learning

Machine learning has allowed the realization of speech recognition, language translation, natural-
object recognition, and self-driving cars. These achievements, which rival human performance, are
performed by neural networks that mimic many structural features of the brain and learn how to per-
form tasks via biologically inspired rules, such as reinforcement learning. However, the mathematical
theory underlying this computational feats is still in its infancy. This block will present the mathe-
matical theory supporting a few machine learning methods in supervised learning, in reinforcement
learning, and in unsupervised learning. Specifically: i) We will present the theory of reproducing-
Hilbert-kernel spaces (RHKSs) underlying support vector machines (SVMs). ii) We will introduce
the theory of Markov decision processes (MDPs) in the context of reinforcement learning (successor
representation). ii) We will discuss the probabilistic framework of recent generative models in artifi-
cial intelligence, namely the autoencoder networks and the generative-adversarial networks (GANs).
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3 Tentative schedule

January 22: Introduction

January 24: Hodgkin-Huxley/Reduced models.

January 29: Local bifurcation analysis 1.

January 31: Local bifurcation analysis 2.

February 5: No class.

February 7: Bifurcations of two-dimensional neurons.

February 12: Intensity-based neural models.

February 14: Integrate-and-fire neural models.
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February 19: Thermodynamic mean-field limits.

February 21: Replica mean-field limits.

February 26: Maximum entropy methods.

February 28: Information geometry 1.

March 5: Information geometry 2.

March 7: Mutual information.

March 12: Rate-distortion theory.

March 14: Midterms

March 26: Information bottleneck.

March 28: Variational Fisher information.

April 2: Linear separability/Perceptron algorithm.

April 4: Linear separability and combinatorics.

April 9: Reproducing-kernel-Hilbert space.

April 11: Support vector machine.

April 16: Markov-decision process.

April 18: Dynamic programming.

April 23: Q-learning algorithm.

April 25: Reduction to linear Bellman equations.

April 30: Autoencoder networks.

May 2: Generative adversarial networks.

May 7: Projects

May 9: Projects

4 Grading of the course

There are three components to your grade: problem sets, a midterm, and a final project. The break-
down will put equal weights on each components (1/3, 1/3, 1/3). Problem sets will be posted on the
course website every other Thursdays and will be due two weeks after being posted. The midterm
exam will be given in class on March 14. The projects will be in-class presentations of mathematical
proofs or research papers, which will be assigned in the second half of the semester.
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5 Academic honesty

Students are expected to behave with integrity. The sanction for any student found in violation of
the UT Honor Code is to be decided by the instructor. For more information please go the following
website: deanofstudents.utexas.edu/sjs/acint student.php.

6 Religious holidays

A student who misses classes or other required activities, including examinations, for the observance
of a religious holiday should inform the instructor as far in advance of the absence as possible, and
no less than 2 weeks in advance, so that arrangements can be made to complete an assignment within
a reasonable time after the absence.

7 Students with Disabilities

The University of Texas provides upon request appropriate academic accomodations for qualified
students with disabilities. For more information contact Services for Students with Disabilities:
ddce.utexas.edu/disability, 471-6259, 471-6441 TTY.
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