Chapter 1

Elementary differential
geometry

Differential geometry is a mature field of mathematics and has many introduc-
tory texts; still, it is not an easy field to master. However, in this book we shall
require only the fundamental ideas and methodologies of differential geometry.
The main theme of modern differential geometry has been to characterize the
global properties of manifolds, and much theory has been developed towards
this end. At this time, the field of information geometry (mostly) requires only
the theory of the locally characterizable properties of manifolds.

For information geometry the most important aspects of differential geome-
try are those which allow us to take problems from a variety of fields: statistics,
information theory, and control theory; visualize them geometrically; and from
this develop novel tools with which to extend and advance these fields. In this
chapter we present an introduction to differential geometry from this point of
view.

1.1 Differentiable manifolds

A differentiable manifold is a mathematical concept denoting a generaliza-
tion/abstraction of geometric objects such as smooth curves and surfaces in
an n-dimensional space. Intuitively, a manifold S is a “set with a coordinate
system.” Since S is a set, it has elements. It does not matter what these ele-
ments are (these elements are also called the points of S.) For example, in this
book, we shall introduce manifolds whose points are probability distributions
and also those whose points are linear systems. S must also have a coordinate
system. By this we mean a one-to-one mapping from S (or its subset) to R",
which allows us to specify each point in S using a vector of n real numbers
(this vector is called the coordinates of the corresponding point). We call the
natural number n the dimension of S, and write n = dim S.

We call a coordinate system that has S as its domain a global coordinate
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Figure 1.1: A coordinate system for S.

system. In our analysis below, we shall consider only the case where there exists
a global coordinate system. However, in general there are many manifolds
which do not have global coordinate systems. Examples of such a manifold
include the surface of a sphere and the torus (the surface of a donut). These
manifolds have only local coordinate systems. This may be viewed informally
in the following way. Consider an oﬁen subset U of S, and suppose that U has
a coordinate system. This provides a local coordinate system for those points
contained in U. For a point not contained in U, consider another open subset V'
containing that point which also has a coordinate system. Repeat this process
until the original set S is covered, so that each point in S is contained in an
open subset which has a coordinate system. Then this collection of open subsets
of S and their corresponding coordinate systems would allow us to express any
point in S using coordinates. However, as mentioned above, in this chapter we
shall consider only the case when there exists a global coordinate system. This
will suffice to prepare us for the later chapters. Indeed, since in this chapter
we principally develop the local theory of manifolds, this assumption does not
typically affect the generality of the analysis.

Let S be a manifold and ¢ : S — R™ be a coordinate system for S. Then
¢ maps each point p in S to n real numbers: (p) = E(p), -+, & p)] =
[¢1,- -+, €&M]. These are the coordinates of the point p. Each £ may be viewed as
a function p — £*(p) which maps a point p to its it® coordinate; we call these n
functions £ : S — R (i = 1,---,n) the coordinate functions.! We shall write
the coordinate system ¢ in ways such as ¢ = [¢1,---,¢"] = [¢] (Figure 1.1).

Let 1 = [p] be another coordinate system for S. Then the same point p’e S
has both the coordinates [£(p)] = [¢!] € R™ with respect to the coordinate
system ¢, and the coordinates [p*(p)] = [p?] € R™ with respect to the coordinate
system 9. The coordinates [p’] may be obtained from [¢7] in the following
way. First apply the inverse mapping ¢! to [¢%]; this gives us a point p in S.
Then apply 9 to this point; this result is [p°]. In other words, we apply the

1We shall use &%, pt to denote both (the variable representing) the it" coordinate of a point
and a coordinate function. This is similar to writing “the function y=vy(z).”
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Figure 1.2: Coordinate transformation.
transformation on R™ given by
wogpAl :[517"'7§n]H[p1""7pn]‘ (11)
This is called the coordinate transformation from o = [¢!] to ¥ = [p?] (Figure

1.2).

To consider S as a manifold means that one is interested in investigating
those properties of S which are invariant under coordinate transformations. In
particular, differential geometry analyzes the geometry of objects using differ-
ential operators with respect to a variety of functions on S, and it would be
problematic if these operators depended fundamentally on the choice of coordi-
nates. Hence it is necessary to restrict the coordinate systems to those which
allow smooth transformations between each other.

In order to properly formalize the concepts described above, let us now
formally define manifolds for which there exists a global coordinate system.

Let S be a set. If there exists a set of coordinate systems A for S which
satisfies the conditions (i) and (ii) below, we call S (more properly, (S,.4)) an
n-dimensional C*° differentiable manifold, or more simply, a manifold.

i) Each element "2 of A is a one-to-one mappin from S to some open subset
g
of R™.

(ii) For all ¢ € A, given any one-to-one mapping % from S to R", the following
holds:

peA = oy isaC™ diffeomorphism.

1

Here, by a C*° diffeomorphism we mean that 9 o™ " and its inverse po Pt

are both C* (infinitely many times differentiable). From these conditions, and
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given the coordinate transformation described in Equation (1.1), it follows that
we may take the partial derivative of the function p’ = pi(£l,. .. ¢") with
respect to its variable arguments as many times as needed, and that the same
holds for &* = &¥(p?, .-+, p"). In this book, the condition C is used a number
of times, but in fact it is usually not necessary; it would suffice for the relevant
functions to be differentiable some appropriate number of times. Intuitively,
then, we may consider C* to simply mean “sufficiently smooth”.

Let S be a manifold and ¢ be a coordinate system for S. Let U be a subset
of S. If the image ¢(U) is an open subset of R™, then we say that U is an open
subset of S. From condition (ii) above, we see that this property is invariant over
the choice of coordinate system . This allows us to consider $ as a topological
space. For any non-empty open subset U of S, we may restrict ©, the coordinate
system of S, to obtain ¢|y (the mapping U — R™ obtained by restricting the
domain of ¢ to U), which may be taken as a coordinate system for U. Hence
we see that U is a manifold whose dimension is the same as that of S.

Let f: S — R be a function on a manifold S. Then if we select a coordinate
system ¢ = [¢7] for S, this function may be rewritten as a function of the
coordinates; i.e., letting [¢'] denote the coordinates of the point p, we have
f() = f(&4,---,€), where f = fow . Note that f is a real-valued function
whose domain is ¢(S), an open subset of R”. Now suppose that g em
is partially differentiable at each point in ¢(S). Then the partial derivative
5%- J(&L,---,€™) is also a function on ©(S). By transforming the domain back

to S, we may define the partial derivatives of f to be ggi ef ggf; op:S —R.

We write (%) to denote the 'value of this function at point p (the partial
P

derivative at point p).

When f = fop~!is C™, in other words when FlEL s ,€™) can be partially
differentiated with respect to its variables an unbounded number of times, we
call f a C* function on S. This definition does not depend on the choice of
coordinate system ¢. The partial derivatives ggi of a C function f are also
C*° functions. We may similarly define the higher-order partial derivatives, e.g.

2
%ff—,- = % g—é. These will also be C*°. As with the case of C® functions on

n _0%f __ 8 8f
R ) DETOET T BE7 9ET holds.
Let us denote the class of C*° functions on S by F (S), or simply F. For

all f and g in F and a real number ¢, we define the sum fH+gas(f+9)(p) =
f(p)+9(p), the scaling cf as (cf)(p) = cf(p), and the product f-g as (f-g)(p) =
f(®) - g(p); these functions are also members of F.

Let [¢] and [p7] be two coordinate systems. Since the coordinate functions

€ and p7 are clearly C'°, the partial derivatives 6%; and 22 are well defined,

dp7 g7
and they satisfy

N AN L, T
- = — — =6, 1.2
j_Z;[ 8;77 agk J:Zl 85] apk k ( )

where 6}, is 1 if k = ¢, and 0 otherwise (the Kronecker delta). In addition, for
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any C* function f, we have

of Z og of .

op’ of
37 = 2 5,7 BF° 851 Z . (1.3)

o€ Bpi

Note: In this book there often appear equations which contain
indices such as i, 7, - - -, and are to be summed over those indices that
are both super and subscripted. For these equations we shall abbre-
viate by omitting the summation sign Y corresponding to these
indices. For example, Equations (1.2) and (1.3) above would be

written as o o
0 00! _ 00 06! _
0pi g 0LI pF  *
of _ %€ of of _ 0p of
Bp7  Op? EV o9&~ 9 dpi

We shall also abbreviate Y . ; ?:1 A;]ka as A;J,VBZ}L Hence (un-
less there is ambiguity), whenever there appears such an equation
we shall assume that there is an implicit  (i.e., there is a summa-
tion over the relevant indices). Note therefore that A%X7 = AL X*,
for instance, is always true. This notation is known as Einstein’s
convention.

Let S and @ be manifolds with coordinate systems ¢ : S — R" and ¢ : Q —
R™. A mapping A : S — Q is said to be C or smooth if o Ao ™! is a C>°
mapping from an open subset of R to R™. A necessary and sufficient condition
for X to be C*> is that fo X € F(S) for all f € F(Q). If a C*° mapping A is a
bijection (i.e., one-to-one and A(S) = Q) and the inverse A™! is also C*°, then
A is called a C* diffeomorphism from S onto Q.

1.2 Tangent vectors and tangent spaces

The tangent space Tp, at a point p € S of a manifold S is intuitively the vector
space obtained by ‘locally linearizing” S around p. Let [¢!] be some coordinate
system for S, and let e; denote the “tangent vector” which goes through point
p and is parallel to the i*" coordinate curve (coordinate axis). By the ith coor-
dinate curve we mean the curve which is obtained by fixing the values of all &/
for j i and varying only the value of £'. The n-dimensional space spanned by
the n tangent vectors ey, - - -, €, is the tangent space T}, at point p (Figure 1.3).
Let p’ be a point “very close” to p, and let [¢!] and [£% + d€°] (where d¢* is an
infinitesimal) be the coordinates of p and p’, respectively. Then the segment

joining these two points may be described by pp’ = d¢’e;, an infinitesimal vector
in Tp,.

Let us make the above concepts more precise. To do so, we must first
formally define what we mean by curves and the tangent vector of curves on a
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Figure 1.3: Tangent Space

manifold. Consider a one-to-one function + : I — S from some interval I (C R)
to S. By defining ~i(t) % £'(y(t)) we may express the point y(t) (¢t € I) using
coordinates as J(t) = [y'(t),--,y"(t)]. If 3(t) is C> for t € I, we call v a C*®
curve on S. This definition is independent of coordinate system choice.

Now, given a curve v and a point y(a) = p, let us consider what is meant by

the “derivative” of y at p, or alternatively the “tangent vector” (i—Z)p = Y(a).

When S is simply an open subset of R", or can be embedded smoothly into R?
(¢ > n), the range of v is contained within a single linear space, and hence it
suffices to consider the standard derivative

o) — 1 2@ R) = 5(@)

= lim ————~ 14

i(a) = im 1051 (1.4)
In general, however, the equation above is not meaningful. On the other hand, if
we take a C*° function f € F on S and consider the value of f(7(t)) on the curve,
since this is a real-valued function, we may define the derivative % (v(?)) in the
usual way. Using coordinates, we have f(y(t)) = f(3(t)) = f(v*(2),---,7"(2)),
and the derivatives may be rewritten as

£ _ (91N ' _ (8 )
a0 = (g) T - (3), =2 o9

We call this the directional derivative of f along the curve 4. Let us consider
this directional derivative as an expression of the tangent vector of 4. In other
words, we take the operator : F — R which maps f € F to a‘itf(’y(t))ltza, and

simply define the tangent vector <i—;)p = 4(a) to be this operator. Then we

may rewrite Equation (1.5) as

0= () =7 (5). (16)

(¥ (a) = £4(t)|t=a). Here (5‘27);) is an operator which maps f — (ggi)p. It
is possible to show that when the tangent vectors can be defined using Equa-
tion (1.4), there is a natural one-to-one correspondence between Equations (1.4)




1.3. VECTOR FIELDS AND TENSOR FIELDS 7

and (1.6). Hence the definition of tangent vectors as operators may be viewed
as a generalization of Equation (1.4).
Since a partial derivative is simply a directional derivative along a coordinate

axis, the operator (a%i) is the tangent vector at point p of the " coordinate
P
curve. The e; mentioned previously corresponds to this (8—2,) . From Equa-
»
tion (1.3), we see that

(),-(E),), = (&),-),), o

Consider all curves which pass through the point p. We denote the set
of all tangent vectors corresponding to these curves by Ty, or T,(S). From
Equation (1.6), we see that

Hl8) = {Ci (a?)p

This forms a linear space, and since the operators { (a%z‘) ii=1,---.n are
»

[ch, -, ER"}. (1.8)

clearly linearly independent, the dimension of this space is n (= dim S). We
call T),(S) and its elements the tangent space and tangent vectors, of S at

the point p , respectively. In addition, we call ( %) the natural basis of the
P

coordinate system [£7].
Let D € T}, be some tangent vector. Then for all f,g € F and all a,b € R,
D satisfies the following:

[Linearity] D(af +bg) =aD(f)+ bD(g). (1.9)
[Leibniz’s rule]  D(f - g) = f(p)D(g) + g(p) D(f). (1.10)

Conversely, it can be shown that any operator D : F — R satisfying these
properties is an element of 7T;,. Hence, it is possible to define tangent vectors in
terms of these properties.

Let A : S — @ be a smooth mapping from a manifold S to another manifold
Q. Given a tangent vector D € T,(S) of S, the mapping D' : F(Q) — R
defined by D'(f) = D(f o \) satisfies Equations (1.9) (1.10) with p replaced
with A(p), and hence D’ belongs to Tx(p)(Q). Representing this correspondence
as D' = (d\),(D), we may define a linear mapping (d\), : T,(S) — Tap)(Q),
which is called the differential of A at p. When S and Q are provided with
coordinate systems [¢°] and [p’] respectively, we have

(&) (552) (), o

Moreover, for any curve y(t) on S passing through the point p it follows that

(dA);;((%)p) - (W)m (112)
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1.3 Vector fields and tensor fields

Let X : p = X, be a mapping which maps each point p in the manifold S
to a tangent vector X, € T,,(S). We call such a mapping a vector field. For
example, if [¢'] is a coordinate system, then we may define n vector fields through

the mappings a%z Dp (f%)p (i=1,---,n). These are the vector fields formed

by the natural basis. Below, we shall write 8; to mean a%i' In general, given
a vector field X, for each point p there exists n real numbers x5, b
which uniquely determine X, = X(9;),. Hence we may define the functions
X' :p— X! on S. We call the n functions {X',---, X"} the components
of X with respect to [¢']. This allows us to write X = X *0;. If, in addition,
we let [p/] be another coordinate system and X = X7 ; ((% = (—3%) be the

component expression of X with respect to [p7], then the following hold:

i — xi o i 39
X' =X o6 and X'=X TR (1.13)

If the components of a vector field are 0> with respect to some coordinate
system, then the components are C* with respect to any other. We call such
a vector field a C'*° vector field. Since we consider only C*° vector fields in this
book, we shall refer to them as simply vector fields. We shall denote this family
of vector fields by 7(S), or simply 7. Clearly 8; € T (t=1,---,n).

Now for any X,Y € 7 and any ¢ € R, the mappings X +Y :p— X, + 7,
and c¢X : p — cX, are also members of 7. Hence 7 is a linear space. In
addition, for any f € F, the mapping fX : p — f(p)X, is a member of 7.

We call F': Vi x Vo x --- x V.. — W, where Vi, Vi, W are linear spaces,
a multilinear mapping if the following property holds. Let F(v;) denote a
mapping of one variable equal to F(vy,--,v,) where some v; has been distin-
guished as the variable, and the other v; (j # 7) are held constant to some value
(€ V). Then F : v; > F(v;) is a linear mapping from V; to W.

Now for each point p € S, let [7},]? denote the family of multilinear mappings
of the form T, x ---x T, — R, and let [T}]! denote the family of the form

e ——

r direct products

Ip x - xT, — T,. We call mappings A : p s A, which maps each point
N e

r direct products
p in S to some element A, of [T,]? (¢ = 0,1) a tensor field of type (g,7)
on S. The types (0,r) and (1,r) are also respectively called tensor fields
of covariant degree r and tensor fields of contravariant degree 1 and
covariant degree r. Vector fields may be considered to be tensor fields of type
(1,0). Although it is possible to define tensor fields of type (¢,7) forg=2,3,---,
they will not be used in this book. In addition, we shall occasionally refer to
tensor fields as simply tensors. )

Let A be a tensor field of type (g,7) and X1, -, X, be r vector fields. Then
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we may consider a mapping with domain S of the following form:
A(Xl7"'7XT) :pHAP((Xl)P""’(XT)P)' (114)

When ¢ =0, A,((X1)p, -+, (X;)p) € R and hence this mapping is a real-valued
function on S. When ¢ =1, A,((X1)p,- -, (X+)p) € Ty, and hence this defines
a vector field on S. Given A, if for all C'*° vector fields X1, ---, X, € 7 the
mapping A(X1, -+, X,)is C* (i.e., when ¢ = 0 the mapping is in F, and when
g=11itisin 7), we call A a C* tensor field. Below, we consider only C'>
tensor fields, and shall simply call them tensor fields.

Consider the tensor field A of type (q,7) to be a mapping (X1, -, X,) —
A(Xy,---,X,). Then when ¢ = 0 we have A: 7 x .-+ x7 — F, and when

————

r direct products
g=1lwehave A: 7 x---x7 — 7. This, in addition to forming a multilinear
— ——

r direct products

mapping, has the following property: for all fi,..., f. € F,
A(fiXa, - o Xe) = fro frA(Xy, -, X)),

We call this the F-multilinearity of A. Conversely, if the mapping A : 7 x
<. x T — F, or alternatively A: 7 x --- x T — 7 is F-multilinear, then this
determines a tensor field p — A, satisfying Equation (1.14).

The operation of a tensor field A of type (0,7) on the r basis vector fields

Oiyy 504, (6% = 3%1) defines a function. Let us denote this by
A(& . ,Bir) = Ail"'ir'

We call the n” functions {A;,..; } obtained by changing the values of iy, - -, i,
the components of A with respect to the coordinate system [¢?]. Let Xi,---, X,
be r vector fields; these may be expressed component-wise as X; = X;Gi. Then
from F-multilinearity, we have

AX1, -, Xp) = Ay, X0 X
In the case of a tensor field A of type (1,7), A(d;,,- -+, 0;,) is a vector field, and

its component expression is given by
A(Biy,-++,0:.) = AF

iqeeeig

19"

O-
The n"*! functions {A¥ ., } thus defined are called the components of A with
respect to [€']. As in the previous case, letting X; = X4, the following holds:

A(Xy,- -, Xp) = (Ak ) X{'I---Xﬁr)ak.

LRRTE .
Let [p/] be another coordinate system. Using ~ to denote components with
respect to [p?], we have

_ B 3£i1 86“
Ajl"‘j'r = Air"’ir <8pj1 ) i S <6p~7f> and (115)

- o o\ [ op°
14 _ k
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1.4 Submanifolds

Let S and M be manifolds, where M is a subset of S. Let (e, €7 = [¢]
and [u!, -+, u™] = [u] be coordinate systems for S and M , respectively, where
n = dim S and m = dim M. Below, we shall use the indices 1,7, k,--+ over
{1,---,n} for S and a,b,c,--- over {1,---,m} for M.

We call M a submanifold of S if the following conditions (i), (ii), and (iii)
hold.

(1) The restriction £°|5 of each & (: S — R) to M, is a C* function on M.

(i) Let Bi %f <g§:>p (more precisely, <6§3§”>p) and B, & [Bi,..-,B" e

R™. Then for each point p in M, {By,--- By, } are linearly independent
(hence m < n).

(ili) For any open subset W of M, there exists U, an open subset of S, such
that W =MnNU.

These conditions are independent of the choice of coordinate systems [¢'] and
[u]. Indeed, conditions (i) and (i) mean that the embedding ¢ : M — S
defined by «(p) = p, Vp € M, is a C*° mapping and that its differential (de)p is
nondegenerate at each point p.

An open subset of S, as we noted in §1.1, forms an n-dimensional manifold;
in addition, it is also a submanifold of S. We may construct an example of a
submanifold of dimension m (< n) in the following way. Let [¢7] be a coordinate
system of S and {¢™*!,... ¢"} be n — m real numbers. Now define

M {peS|Eip) =, m+1<i< n}.

We assume that M # § (the empty set). Then if we let u® < 9|y, (1<a<m),
M is an m-dimensional manifold with coordinate system [u%], and hence it is
a submanifold of S. The “reverse” of this is also true at least locally. In other
words, if M is an m-dimensional submanifold of S, with [u®] its coordinate
system, and {¢™T,... ¢"} is a set of n —m real numbers, then it is possible to
choose U, an open subset of S, and a coordinate system [€%], so that

MnU={peUl(p)=c',m+1<i<n}

and moreover, u®| vy = £ pnu (1 < a < m).
If M is a submanifold of S then a curve ~y : t — ~(t) in M is also a curve

in S. Hence letting p be a point on =, the tangent vector (i—;’) of v may be
P

considered both as an element of T,(M) and as one of T, (S). Using coordinate
systems [u®] and [¢'] for M and S, respectively, and letting ~* LV ~ and

vt o) &' 0 v, these tangent vectors may be written as (%) (8a)p € T,(M)
P
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and (%) (8i)p € T,(S), where 0, = aia and 0; o aizi' Since
p

dy! ot dv*
(&), (), (), @1
P W t /e
from condition (ii) for submanifolds we see that there is a one-to-one correspon-
dence between these tangent vectors. In other words, this correspondence is
given by the differential (d¢), of the embedding + : M — S. By considering the

corresponding pairs to be equivalent, we may view T,(M) as a linear subspace
of Tp,(S). From Equation (1.17) we obtain

) (%) (L) -mo
<3U“>p (8ua L \0E ) B, 0. (1.18)

This shows that B.0; is the natural basis vector 9, of M with respect to
coordinate system [u®] seen as a vector in T,(S). In addition, this may be
interpreted as the equality of the differential operators: for all f € F(9),

oua - \ ue ogt )
p p P

1.5 Riemannian metrics

Let S be a manifold. For each point p in S, let us assume that an inner product
(, ), has been defined on the tangent space T,(S). In other words, for any
tangent vectors D, D" € T;,(S) we have (D, D’),, € R, and the following hold.

[Linearity] (aD +bD',D"), = a(D,D"), +b(D',D"),

(Va,b € R) (1.19)
[Symmetry] (D,D"), ={(D', D), (1.20)
[Positive-definiteness] If D # 0 then (D, D), >0 (1.21)

Note that (, ), € [T;,(S)]3 since from Equations (1.19) and (1.20) we see that
(,) p is a bilinear form. Hence the mapping from points p in S to their inner
product on T,(S),say g :p— (, ) s 18 & tensor field of covariant degree 2. We
call this a (C*°) Riemannian metric on S. Such a metric, g, is not naturally
determined by the structure of S as a manifold; it is possible to consider an
infinite number of Riemannian metrics on S. Given a Riemannian metric g on
S, we call S (more precisely (5, ¢)) a Riemannian manifold.

Let [€'] be a coordinate system for S, and let 0; o 8%. Then the compo-
nents {g;;;4,j = 1,---,n} (n = dim S) of a Riemannian metric g with respect

to [¢Y] are determined by g;; = (9;,0;). This is a C*° function which maps
each point p in S to g;;(p) = ((0i)p, (8;)p),- If we rewrite the tangent vectors
D,D’ € T, in terms of their coordinates as D = D¥(9;), and D' = D"(8;)p,
their inner product may then be written as:

(D,D"), = g;;(p) D' D".
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Also, the length || D|| of the tangent vector D is given by
IDI* = (D, D), = gi;(p) D*D’.

If we let G(p) = [gs;(p)] be an n x n matrix whose (4, 7)™ element is g;;(p),
we see from Equations (1.20) and (1.21) that this is a positive definite sym-
metric matrix. Conversely, suppose we are given a coordinate system [£!] for
an n-dimensional manifold S, and n? C*° functions {g;;} (C F(S)). Then if
G(p) = [9:;(p)] is a positive definite symmetric matrix for every point p € S,
the corresponding Riemannian metric on § which has g;; as its components

with respect to [¢!] is uniquely determined. The relationship between these

components and the components giy = <5k,5g> (5k & %) with respect to

a different coordinate system [p*] is given by the following transformations of
covariant tensor fields of order 2 (refer to Equation (1.15):

. ot ¢’ [ 0p" [(8p°
ke = Gij (55,;) <5?> and gy = ke <8§1 525 : (1.22)
Let g% (p) be the (4,7)*" component of the inverse G(p)~* of G(p) = [9:;(p)]

(this inverse is also positive definite symmetric). Now define the function g% :
p— g (p) on S. Then

9i9°" = 6f :{ (1) 827:&3 ’ (1.23)

and the relationship between this inverse and G(p)~* = [§*(p)], which is the
inverse of G(p) = [Gre(p)], is given by the following.

B k 4 B i i
g = g¥ (g’;» <—Z—g7> and g7 = " (g;) <g—f};> : (1.24)

Let 7y : [a,b] — S be a curve in the Riemannian manifold S. We define its

length ||v|| to be
def b d’}/ ¢ L
] =/a EHdt:/a \ gV de, (1.25)

where 4 is the derivative of et £ o (see Equation (1.6).)

Let M be a submanifold of a Riemannian manifold S. As noted in §1.4, for
each point p € M, we may view T,(M) as a linear subspace of T),(.5), and hence
an inner product g(p) = (, ), on T,(S5) naturally defines an inner product on
T,(M). Then, letting g|ar(p) denote this inner product, g|ar : p — glm(p) is a
Riemannian metric on M. Given a coordinate system [u®] on M, we see from
Equation (1.18) that the components of g|ar, {gas} satisfy

_ [0 9N _ (08N (¢
(e ) (E) &) o
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1.6 Affine connections and covariant derivatives

Let S be an n-dimensional manifold. If S is an open subset of R”, then by
defining the tangent vector of a curve v according to Equation (1.4), the tangent
space T, = T,,(5) at each point p € S may be considered equivalent to R™. This
means that for p and ¢ not equal, there is still a natural correspondence between
T, and T,;. For a general manifold S, however, T}, and Ty, are entirely different
spaces when p # ¢. Hence, to consider relationships between 7}, and Ty, we
must somehow augment the structure of S as a manifold. Affine connections
are such a structural augmentation.

Intuitively, defining an affine connection on a manifold S means that for
each point p in S and its “neighbor” p’, we define a linear one-to-one mapping
between T}, and T},,. Here we call p’ a neighbor of p if, given a coordinate system

[¢7] of S, the difference between the coordinates of p and p/, dgi E(p')—E(p),
when construed as a first-order infinitesimal, is sufficiently small that we may
ignore the second-order infinitesimals (d¢?)(dé7). Below we shall introduce the
notion of affine connections in an intuitive manner using infinitesimals. (It is
possible to formalize this discussion by using fiber bundles.)

As shown in Figure 1.4, in order to establish a linear mapping II,, ,; between
T}, and T we must specify, for each j € {1,---,n}, how to express II, ,» ((9;),)

in terms of a linear combination of {(01)p, -+, (n)p} (0 %f % . Let us
assume that the difference between I, ,/ ((9;),) and (8;), is an infinitesimal,
and that it may be expressed as a linear combination of {d¢!,---,d¢"}. Then
we have _

Hp:p’((ﬁj)p) = (aj)p' - dgl(rfj)p(ak)pﬂ (1-27)
where {(I';)p; 4,4,k = 1,---,n} are n® real numbers which depend on the point
.

If for each pair of neighboring points p and p’ in S, there is defined a linear
mapping I, v : T}, — T,y of the form described in Equation (1.27), and if the
n3 functions I’fj 1P (I‘fj)p are all C'>°, then we say that we have introduced
an affine connection on S. In addition, we call {Ffj} the connection coeffi-
cients of the affine connection with respect to the coordinate system [¢?]. Note
that the only constraint on the connection coefficients are that they be C*°, and
that therefore affine connections have this degree of freedom. Below, we often
refer to affine connections as simply connections.

Let [p"] = [p',--+,p"] be a coordinate system distinct from [£7], and let
Or = Bip" = g‘gi&. From Equation (1.27) and the linearity of II, ,» we have

¢
ap*

I, ((82)y) = ( ) {8y — A€ (T ) () }-

By substituting into the right hand side of this equation

7), = (&), (om0
= + d and
<<9ps » op°), \0p"0p*/, ¢
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Figure 1.4: Affine connection (an infinitesimal translation)

d&* = (68) dp” (dp’” =) - /f(p)),
p

ap"
and ignoring second order infinitesimals, we obtain
Hzxp’((és)p) = (53);;’ - dpr(f‘is)p(ét)p’» (1.28)

where (I,), is the value of the function

= 08 067 9%k N\ gpt
I, =41k g
J apr 6[)‘9 8’0raps aé'k

at the point p. Note that Equations (1.27) and (1.28) are of the same form.
Furthermore, if the functions I‘fj are C'> for all (4, j, k) then so are the functions

It for all (r,,). In other words, the notion of affine connections is independent
of the choice of coordinate system. Their connection coefficients, however, are
related according to Equation (1.29).

An affine connection determines, for neighboring points p and p’, a corre-
spondence between T, and T}y. By connecting a sequence of such correspon-
dences, we may find, for non-neighboring points p and ¢, a correspondence
between T}, and Ty. This correspondence depends, however, on the curve v by
which one connects p and q. Let us define the notion of “translating tangent
vectors along a curve” in the following way.

Let v : [a,b] — S, where v(a) = p and 7(b) = g, be a curve which connects
points p and ¢ in S. We call a mapping from each point ~(t) to a tangent
vector X(t) € Ty, say X : t — X(t), a vector field along ~. Given such
a vector field X, if, for all ¢ € la,b] and the corresponding infinitesimal d¢, the
corresponding tangent vectors are linearly related as specified by the connection,
ie., if

(1.29)

X(t + dt) = H’y(t),'y(t-l—dt) (X(t)), (130)
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Iy, r(e+dn

7N

X(t+dt)

X(b)=1I,(D)

7(a)

Figure 1.5: Translation of a tangent vector along a curve

then we say that X is parallel along v (Figure 1.5).

Let us rewrite the equation above with respect to the coordinate system [£7].
Letting 0; = a%n we have X (t) = X*(t)(8;)~(t). From Equation (1.27) we have
that

IL (1) (et (X (£)) = {X*(8) = A (X () (T 00} (Br)yiean,  (131)
where ¢ 4l ¢i 6y, and 4%(¢) is its derivative with respect to ¢. Now since in
addition, X (t+dt) = X*(¢t-+dt)(D;)(t+at), substituting this into Equation (1.30)
we obtain _ . 4

X5 + 4 ()X () (T =0, (1.32)
where X*(t) - dXdkt(t) = Xk(tJ’d;)#Xk(t). Equation (1.32) is an ordinary linear
differential equation on X*(t),---, X"(¢), and hence given an initial (boundary)
condition there exists a unique solution. From this, given D € T, = Tp, we
see that there exists a unique parallel vector field along ~ such that X (a) = D.
Then letting IL, (D) denote the vector X (b) € T = Ty determined by D, we
see that IL, is a linear isomorphism from T}, to T;. We call II, the parallel
translation along ~.

Let 7 : [a,b] — S be a curve and X be a vector field along «. In general,
X (t) and X (¢ + h) lie in different tangent spaces and hence it is not possible
to consider the derivative d‘zt(t) = limj_o X—“'H%—_X(Q However, if an affine
connection is given on S, then the parallel translation of X (t + h) € T4 to
the space Ty (;) along v gives us Xi(t+ h) = ILyt+n) ) (X (t + h)), and using

this we may consider within T’ the quantity limp—.o L%h)_& We call
5X(¢)

this the covariant derivative of X (¢), and denote it by ~5~. In other words,

instead of dX (¢) = X (¢ 4 dt) — X (t), we use
6X (t) = Iy (eqar) (1) (X (¢ + dt)) — X (2) (1.33)

(see Figure 1.6).
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1o »

oX(t)
X(t+dt)

y(t+de)
Il
o

/]

T»

Figure 1.6: The covariant derivative along a curve.

Rewriting X (t) as X7(¢)(0;)+(), we have

ILyt+an) 4 (X (E+dt)) = {XE(t + de) + dtd" () X7 (£) (TE )y } (Ok)r(t)> (1.34)
and substituting this into Equation (1.33), we obtain

a)é't(t) = &+ + VX T } @r)yco- (1.35)

This also forms a vector field along . In addition, we see that the parallel
translation condition in Equation (1.32) may now be written simply as —‘;—)f =
In this way, using an affine connection it is possible to define the infinitesimal
0X and the derivative ‘;—)f of a vector field X (t) along a curve. Extending this to
“the directional derivative of a vector field X = X ‘0; € T on S along a tangent
vector D = D'(8;), € T,,” is straightforward as follows: consider a curve whose
tangent vector at the point p is D, and by taking the covariant derivative of X

along this curve we obtain
VpX = D' {(8;X*), + X3(T%),} (9k)p € T, (S). (1.36)
In fact, letting X, : ¢ s X (¢) for an arbitrary curve v, we have from Equa-
tions (1.35) and (1.36) that
— = =V X. (1.37)

We may also define for each X,Y € 7(S) the vector field ViV € 7(S) by
(VxY), = Vx,Y € T,(S). We call this the covariant derivative of ¥ with
respect to X. Given X = X'0; and Y = Y9;, we may write

VxYV =X {8Y*+YTEY o, - (1.38)
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In particular, when X = 9; and Y = 0;, we obtain the component expression
of the covariant derivative

V,0; = T8k (1.39)

This may be construed as the vector field which expresses the change in the
basis vector 9; as it is moved in the direction of 0;.

The operator V : 7 x 7 — 7 which maps (X,Y) to VxY satisfies the
following properties: for arbitrary X,Y,Z € T and f € F (: the set of C*
functions on S),

(i) VxsvZ =VxZ+VyZ.
(i) Vx(Y + 2) = VxY + VxZ.
(ifi) V;xY = fVxY.
(iv) Vx(fY) = fVxY + (X [)Y.

Here, X f denotes the function p — X,f (€ F). Note that VxY is F-linear
with respect to X, but not with respect to Y, and hence V is not a tensor field.
In fact, it is possible to consider the conditions (i)-(iv) as the defining prop-
erties of affine connections. In other words, we may define an affine connec-
tion on S to be a mapping V : 7(S) x T(S) — T(S) which satisfies condi-
tions (i)-(iv). In addition, we may define the connection coefficients {TE} of
V with respect to some coordinate system [£'] to be the n® functions deter-
mined by Equation (1.39). Then it is possible to prove Equations (1.38) and
(1.29) from conditions (i)-(iv). It is also possible to reverse the derivation in
Equations (1.32)-(1.37) to arrive at the definitions of %ﬁ and IL, from that
of V. This method would make the use of both infinitesimals and fiber bundles
unnecessary. In this book, we shall often refer to the “connection V”.

Finally, we note that the totality of affine connections on a manifold forms
an affine space. In other words, for any affine connections V and V'’ and for
any real number o € R, the affine combination aV + (1 — a)V’ defines another
affine connection. Note also that the difference of two affine connections is a
tensor field of type (1,2).

1.7 Flatness

Let X € 7(S) be a vector field on S. If for any curve y on S, Xy : ¢ — X,y(y) is
parallel along «y (with respect to the connection V), we say that X is parallel on
S (with respect to V.) In this case, for any curve -y which connects points p and
. ¢, X, = T1,(X,) holds. A necessary and sufficient condition for an X = X “0;
to be parallel is that Vy X = 0 for all Y € 7(S), or equivalently that

8;X* + XTh =0. (1.40)

Note that nonzero parallel vector fields do not exist in general.
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Let [¢'] be a coordinate system of S, and suppose that with respect to this
coordinate system the n basis vector fields 9; = (%- (i=1,---,n) are all parallel
on S. Then we call [¢!] an affine coordinate system for V. This condition
is equivalent both to Vg,0; = 0 and also to the condition that the connection
coefficients {T'};} of V with respect to [¢'] are all identically 0.

Given some connection, a corresponding affine coordinate system does not
in general exist. If an affine coordinate system exists for connection V, we say
that V is flat, or alternatively that S is flat with respect to V. Let [£7] be an
affine coordinate system. Then with respect to a different coordinate system
[p"], we see from Equation (1.29) that the connection coefficients {T* } may be

~ k
written as [, = 82’2‘(€9p5 gg. Hence a necessary and sufficient condition for [p"]
2 ok
to be another affine coordinate system is that 25 — (. This is equivalent to

9prop . )
the condition that there exist an n x n matrix A and an n-dimensional vector

B such that
£(p) = Ap(p) + B (Vp € S) (1.41)

(&(p) = [€'(p)] and p(p) = [p"(p)].) We call a transformation of the form
described in Equation (1.41) an affine transformation (when B = 0, this
is simply a linear transformation). In addition, we see that this transformation
is regular, i.e., one-to-one, and that A is a regular matrix. The collection of
such regular affine transformations form a group, and affine coordinate systems
have this degree of freedom.

Let V be a connection on S. Then for vector fields X,Y, Z € 7, if we define

RX,Y)Z ¥ Vx(VyZ)-Vy(VxZ)-VixyZ and (1.42)

T(X,Y) ¥ VxY-VyX-[X,Y] (1.43)

then these are also vector fields (€ 7). Here, letting X = X'9; and Y = Y*9;,
we have defined [X, Y] to be the vector field

1X,Y] = (X8, — Y70,X")d;

(this does not depend on the choice of coordinate system). The mappings R :
TXTxT—TandT:7 x7T — T as defined above are both F-multilinear.
Hence R and T are respectively tensor fields of types (1,3) and (1,2). We call
R the Riemann-Christoffel curvature tensor (field) of V, or more simply
the curvature tensor (field), and T the torsion tensor (field) of V. The
component expressions of R and T with respect to coordinate system [£?] are
given by

R(9;,0;)0r = Ri;;,0, and T(9;,0;) =T\0% (1.44)

(Bi & a%- ), and these may be computed in the following way:

R, = 0% — 04 +T5I, —T% I  and (1.45)

ko _ k k
E — Tk 1%, (1.46)

7
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If [¢] is an affine coordinate system for V, then clearly Rfj r = 0and Ti’;- =0.In
fact, in this case the components of R and T, since they are tensors, are always
all 0 with respect to any coordinate system. In other words, if V is flat, then
R =0and T = 0. Conversely, if R =0 and 7" =0, it is known that V is locally
flat in the following sense: for each point p € S, there exists a neighborhood U
of p such that V is flat on U. A proof will be found in standard textbooks of
differential geometry.

In general, when 7' = 0 (i.e., I‘fj = F?z) holds, V is called a symmetric
connection or torsion-free connection. The connections having appeared
so far in information geometry are mostly symmetric connections. However,
the incorporation of torsion into the framework of information geometry, which
would relate it to such fields as quantum mechanics (noncommutative probabil-
ity theory) and systems theory, is an interesting topic for the future. We will
make an attempt in this direction in §7.3.

If a connection is flat, then parallel translation does not depend on the
curve selected to connect the two points. In particular, the n basis vector fields
0 = 5%-— (i =1,---,n) of an affine coordinate system [¢’] are parallel vector
fields, and hence IL,((9;),) = (0;)4 regardless of the curve « used to connect the
points p and ¢. In addition, if the components X of a vector field X = X0,
are all constant on S, then X is parallel, and II,(X,) = X,.

In general, if parallel translation does not depend on curve choice, or in
other words if there are n linearly independent parallel vector fields on S then
R =0, and in addition, when S is simply connected (i.e., when arbitrary closed
loops may be continuously contracted to a single point) it is known that the
converse also holds.2 There exist, however, connections for which R = 0 and
T # 0. When this is the case, although parallel translation does not depend
on the curve selected, there does not exist an affine coordinate system. Such
spaces, called spaces of distant parallelism, were introduced by Einstein within
the context of unified field theory, and also serve a major role within the theory
of non-Riemannian plasticity. Another example will be shown in §7.3.

From Equations (1.45) and (1.46) we see that in general Rfjk =S —Rﬁik and
Tj} e —Tﬁ. Hence, in the particular case when S is 1-dimensional, R = 0 and
T = 0 necessarily hold, and therefore S is flat.

1.8 Autoparallel submanifolds

Let S be an n-dimensional manifold and M be an m-dimensional submanifold
of S. Let [¢'] and [u®] be coordinate systems for S and M, respectively, and let
0; = % and 9, = ({%. Suppose also that V is an affine connection on S and
that {T';} are the connection coefficients of V with respect to [¢7]. Now letting
X = X%, and Y = Y%, € T(M) be vector fields on M, we may consider
Vx,Y, the “directional derivative of Y along X", as we did in Equation (1.36).
However, even though in general Vx Y is a tangent vector of S (€ Tp,(9)), it

2There are those who define “flat” to denote this case.
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is not necessarily a tangent vector of M (e T,(M)). If we let VxY denote the
mapping from points p in M to Vx,Y € T,(S), then using identities such as
Oy = (8,€%)0; we have

VxY = XH0.Y")0 + XY {(0a8")(96&” )TE; + 0,05E"} 8. (1.47)
In particular, letting X = d, and Y = 8, we obtain
V9,0 = {(8a€") (067 )T}, + 0.00€"} 0. (1.48)
Note also that Equation (1.47) may be written as
VxY = X%8,Y")8, + X°Y°Vy, 0, (1.49)

As we mentioned above, for X,Y € 7 (M), (VxY)p = Vx,Y is an element
of Tp(S), but not necessarily one of T},(M), i.e., in general, VxY ¢ T(M). If,
however,

VxY € T(M) for VX,Y eT(M), (1.50)

then V determines a covariant derivative on M. In fact, when this is the case
the conditions (i)-(iv) from §1.6 hold for all X,Y, Z € T(M) and all f € F(M),
and V is an affine connection on M. If we use this connection to define a
parallel translation nyw t Tyo) (M) — Ty (M) on M along the curves 7 :
[a,b] — M, then this translation coincides exactly with the parallel translation
ILy : T (a)(S) — T 3)(S) on S restricted to the tangent spaces of M, using the
original connection on S. In other words

H’zyu = H’Y|T

) (1.51)

If a submanifold M of S satisfies Equation (1.50), we say that M is au-
toparallel with respect to V. In particular, open subsets of S are autoparallel.
From Equation (1.49) we see that a necessary and sufficient condition for A/
to be autoparallel is that Vg, 8, € 7 (M) holds for all a,b. This, in turn, is
equivalent to there existing m? functions {I'¢,} (€ F(M)) which satisfy

V.0 = T¢,0,. (1.52)

These {I',} form the connection coefficients of V with respect to [u?]. Using
Equation (1.48) we may rewrite Equation (1.52) in the following way:

Tep0cE" = (8a") (8587 )TE; + 0,05E". (1.53)

We can also see that M is autoparallel in S if and only if M is closed with respect
to the parallel translation on S in the following sense: for every curve v :la,b] —
M in M and for every tangent vector D of M at y(a), the result IL,(D) of the
parallel translation I1, : T'(4)(S) — T ) (S) belongs to the tangent space of M

at v(b).
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1-dimensional autoparallel submanifolds are called autoparallel curves or
geodesics. For a curve 7y : ¢ — (), the condition in Equation (1.52) may be
rewritten using Equation (1.37) as

0 dy

dy
w3 =Dl (1.54)

de’

where I' : ¢ — T'(¢) is a C*° function. As we noted at the end of §1.7, connections
on l-dimensional manifolds are necessarily flat, and hence by substituting into
Equation (1.54) a suitable one-to-one transformation (change of variable) of ¢,
we may obtain I'(¢) = 0. We call such a ¢ an affine parameter of v. In this
case Equation (1.54) reduces to

0 dy
— L =0, 1.55
de dt . (1:55)
and implies that %% is parallel along «. It is possible to define geodesics using
Equation (1.55). Rewriting Equation (1.55) using the coordinate system [¢¢]
and the corresponding representation 7' = £% o v, we obtain

5(8) + 4 (037 (T4 = 0. (1.56)

Let M be an autoparallel submanifold of S. If the torsion tensor of S is
0, then the torsion tensor of M is also 0. This is clear from Equations (1.46)
and (1.53). The same holds for the curvature tensor. The latter fact may be
derived using Equations (1.45) and (1.53), but it is in fact immediate from the
analysis of parallel translation as follows: from Equation (1.51) we see that if
the choice of curve does not affect parallel translation in S, then it similarly does
not in M. Note that, in the case when parallel translation does not depend on
curve choice, a necessary and sufficient condition for a submanifold M to be
autoparallel in S is that there exist m = (dim M) linearly independent vector
fields on M which are parallel with respect to the connection on S.

Consider the case when § is flat with respect to V. Then by the argu-
ment above autoparallel submanifolds of S are also flat. Hence without loss
of generality we may assume that [¢f] and [u®] are affine coordinate systems
in Equation (1.53), the condition for a submanifold M of S to be autoparallel.
Equation (1.53) then reduces to 0,0, = 0. This condition is equivalent to
there existing an n x m matrix A and an n-dimensional vector B which satisfies

£(p) = Au(p) + B (Vp € M) (1.57)

(£(p) = [€(p)] and u(p) = [u®(p)].) In general, a subspace of R™ which may
be expressed as {Au+ Blu € R™} is called an affine subspace of R" (; when
B = 0 we have a linear subspace). We summarize the discussion above in the
following theorem.

Theorem 1.1 If S is flat, then a necessary and sufficient condition for a sub-
manifold M to be autoparallel is that M is expressed as an affine subspace (or
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an open subset of an affine subspace) of S with respect to an affine coordinate
system. In particular, geodesics may be expressed using linear equations (as a
line or a segment) with respect to affine coordinate systems. In addition, if M
is autoparallel, then it is also flat.

1.9 Projection of connections and embedding
curvature

If M is a submanifold of S which is not autoparallel with respect to V on S, then
there is no natural connection on M which may be derived from V. However, if
there is for each point p a mapping 7, from 7T,(S) to T, (M), then we may use
this to define a connection on M. Assume that Tyt Tp(S) — Tp(M) is a linear
mapping and that m,(D) = D for every D € T,(M) , and that the relation
p = mp is C'°. Now suppose, for each X,Y € T (M), we define Vg?) € T(M)
in the following way:

(VOY), =m((VxY),)  (Ype M), (1.58)

Then V(™) is a connection on M. In particular, if a Riemannian metric g = ( , )
is given on S, we may take as p the orthogonal projection with respect to g.
This is defined to be that which satisfies, for all D € T,(S) and all D’ € T,(M),

” (1.59)

<7TP(D)7D/>;D = <D5D/>
We call such V(™) the projection of V onto M with respect to g.
If S has a coordinate system [¢7], then the connection coefficients {T5} of V
are determined by Equation (1.39). If S also has a Riemannian metric g, then
we may define n® additional functions {T'ij.x} in the following way:

Tijn = (V,0;,04) = T} Ghi- (1.60)

The quantities {T';; 1}, like {T%;}, may be considered as a different component
expression of the'same V. With respect to a different coordinate system [p"] for

S, these may be written as follows (ci = aip"):
= e = = € oI 0%¢h oEr
J &= 505,00 ) = [ === 2Tip + —> —=. 1.61
t <Vay‘3 ; t> (BpT oLkt 8505 I ) 3y (1.61)

Similarly, for the projection V(™) of V onto M , we may define, given a co-
ordinate system [u?] for M, I’ ((le;,)c &ef <V((9:)6b,88> <8a = %) Using Equa-
tions (1.58), (1.59) and (1.48) we may rewrite this as

Tore = (T0,05,0:) = {(0u€") (059 Tisk + (BudE g0} (0,6"). (1.62)

ab,c
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The connection coefficients of V(*) are then given by I‘S;)d — Fffg) g°?. From

this, we see that if V is symmetric, then so is VE),
Now let

HX,Y) ¥ vy - vy (1.63)
for X,Y € T(M). Then (H(X,Y)), = (VxY)p,—mp((VxY),) is the orthogonal
projection of (VxY), onto [T,(M)]*, the orthocomplement of T},(M). Given
this, note that the autoparallel condition for M in Equation (1.50) is equivalent
to stating that H(X,Y) = 0 holds for all X,V € 7 (M), and that this, in turn,
is equivalent to simply stating that A = 0. Intuitively, H may be considered
as measuring the degree to which M is “not autoparallel” or “curved” in S. In
addition, since H(X,Y") is F(M)-linear with respect to both X and Y (i.e., is
F(M)-bilinear), H may be considered as “a kind of” tensor field, even though
H(X,Y)isnot a vector field on M in general. We call such an H an embedding
curvature of the submanifold M (C S) with respect to V.

Since M has V(™) as a connection, we may use this to compute its Riemann-
Christoffel curvature R(™). This R(™ expresses the “inherent curvature” of
M itself, while the embedding curvature H expresses the curvature of the ar-
rangement of M within S. As we noted in §1.8, if R, the Riemann-Christoffel
curvature of S, is 0, and if, in addition, H = 0 (i.e., M is autoparallel), then
R(™ = 0 also. However, R(™) = 0 does not entail H = 0. For example, con-
sider a cylinder surface M embedded within a 3-dimensional Euclidean space.
The 2-dimensional geometry on the surface of this cylinder is Euclidean, and
R(™ = 0. However, within the 3-dimensional space it is curved, and hence H is
not 0. It is important to distinguish these two notions of curvature.

For each point p in S, let {(0y)p;1 < a < m} (m = dim M) be a basis for
T,(M), and let {(8x)p;m +1 < k < n} (n = dimS) be a basis for [7,(M)]*.
Then we may define the m?(n — m) functions {Hgp. } in the following way:

Heope < (H(8a,85),0x) = (Vo, 05, 0) - (1.64)

It follows from the properties of tensors that H = 0 < Hype = 0 (Va, b, k).

1.10 Riemannian connection

Let V be an affine connection on a Riemannian manifold (S,g = (, )), and
suppose V satisfies, for all vector fields X,Y, Z € 7(9),

Z(X,Y) = (VzX,Y)+ (X, VzY). (1.65)

Then we say that V is a metric connection with respect to g. Using the
coordinate expressions of g and V we may rewrite this condition as follows:

OkGis = i j + Tkji- (1.66)

Let us show that, under a metric connection, the parallel translation of two
vectors leaves their inner product unchanged. Consider a curve v : ¢ — (¢)
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on S and two vector fields X and Y along +. Letting %— and % respectively
denote the covariant derivatives of X and Y with respect to V, we see from
Equation (1.65) that

& x0yo = (Gl ve)+ (x0.20). e

Now if X and Y are both parallel on v (i.e., ‘Sd—)f = % = 0), then the right hand
side of the equation above is 0, and hence (X (t), Y (t)) does not depend on ¢ and
is constant. The parallel translation II,, along v, then, is a metric isomorphism
which preserves inner products. In other words, letting p and ¢ be the boundary

points of vy, for any two tangent vectors Dy, Dy € T » the following holds:
(IL,(D1),TL, (Dy)), = (D1, Da),,. (1.68)

We call a connection which is both metric and symmetric the Riemannian
connection or the Levi-Civita connection with respect to g. For a given g,
such a connection exists uniquely. In fact, combining Equation (1.66) with the
requirement that T';; , = T'ji k, we have

Lijx = % (0igjk + 05 gki — Ongij) - (1.69)
The geodesics with respect to the Riemannian connection V are known to
(locally) coincide with the shortest curve Jjoining two points (where we measure
length according to Equation (1.25).) In addition, if we consider the case when V
is flat and there exists an affine coordinate system [¢], we find that since 9; = é%
is parallel on S, (0;, 0;) is constant on S. Since affine coordinate systems have
a degree of freedom as given in Equation (1.41), we see in particular that there
exists an affine coordinate system which satisfies

(0i,05) = 8. (1.70)

A coordinate system which satisfies the equation above is called a Euclidean
coordinate system (with respect to g). Hence the Riemannian connection is
flat if and only if there exists a Euclidean coordinate system.

In most differential geometry textbooks, only Riemannian connections are
introduced on Riemannian manifolds. Non-metric connections are not even
discussed. However, when considering families of probability distributions as
manifolds, we find that the natural connections which one would introduce are
non-metric (see §2.3). As we shall discuss in Chapter 3, this leads us to the
novel notion of dual connections.




