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One of the central problems in systems neuroscience is to understand
how neural spike trains convey sensory information. Decoding methods,
which provide an explicit means for reading out the information con-
tained in neural spike responses, offer a powerful set of tools for studying
the neural coding problem. Here we develop several decoding meth-
ods based on point-process neural encoding models, or forward models
that predict spike responses to stimuli. These models have concave log-
likelihood functions, which allow efficient maximum-likelihood model
fitting and stimulus decoding. We present several applications of the
encoding model framework to the problem of decoding stimulus infor-
mation from population spike responses: (1) a tractable algorithm for
computing the maximum a posteriori (MAP) estimate of the stimulus,
the most probable stimulus to have generated an observed single- or
multiple-neuron spike train response, given some prior distribution over
the stimulus; (2) a gaussian approximation to the posterior stimulus dis-
tribution that can be used to quantify the fidelity with which various
stimulus features are encoded; (3) an efficient method for estimating the
mutual information between the stimulus and the spike trains emitted
by a neural population; and (4) a framework for the detection of change-
point times (the time at which the stimulus undergoes a change in mean
or variance) by marginalizing over the posterior stimulus distribution.
We provide several examples illustrating the performance of these esti-
mators with simulated and real neural data.

Neural Computation 23, 1–45 (2011) C⃝ 2010 Massachusetts Institute of Technology



2 J. Pillow, Y. Ahmadian, and L. Paninski

1 Introduction

The neural decoding problem is a fundamental problem in computa-
tional neuroscience (Rieke, Warland, de Ruyter van Steveninck, & Bialek,
1997): given the observed spike trains of a population of cells whose re-
sponses are related to the state of some behaviorally relevant signal x,
how can we estimate, or “decode” x? Solving this problem experimen-
tally is of basic importance for both our understanding of neural coding
and the design of neural prosthetic devices (Donoghue, 2002). Accord-
ingly, a rather large literature now exists on developing and applying
decoding methods to spike train data in both single-cell and population
recordings.

This literature can be roughly broken down into two parts, in which the
decoding algorithm is based on either regression techniques or Bayesian
methods. Following the influential work of Bialek, Rieke, de Ruyter van
Steveninck, and Warland (1991), who proposed an optimal linear decoder
posed as a version of the Wiener-Hopf problem, the last two decades
have seen a great number of papers employing regression methods,
typically multiple linear regression in the time or frequency domain
(Theunissen, Roddey, Stufflebeam, Clague, & Miller, 1996; Haag & Borst,
1997; Warland, Reinagel, & Meister, 1997; Salinas & Abbott, 2001; Serruya,
Hatsopoulos, Paninski, Fellows, & Donoghue, 2002; Nicolelis et al., 2003;
Mesgarani, David, Fritz, & Shamma, 2009; see also Humphrey, Schmidt,
& Thompson, 1970). Elaborations on this idea include using nonlinear
terms in the regression models (e.g., polynomial terms), as in the Volterra
model (Marmarelis & Marmarelis, 1978; Bialek et al., 1991) or using neural
network (Warland et al., 1997) or kernel regression (Shpigelman et al., 2003;
Eichhorn et al., 2004) techniques. These methods tend to be quite compu-
tationally efficient, but they are not guaranteed to perform optimally for
plausible models of the encoding process and do not explicitly incorporate
prior information about the stimulus domain.

On the other hand are decoding algorithms based on Bayes’ rule, in
which the prior distribution of the signal to be decoded is combined with a
forward or encoding model describing the probability of the observed spike
train, given the signal (see Figure 1). The resulting Bayes estimate is by con-
struction optimal, assuming that the prior distribution and encoding model
are correct. This estimate also comes with natural error bars—measures of
how confident we should be about our predictions—arising from the poste-
rior distribution over the stimulus given the response. Decoding therefore
serves as a means for probing which aspects of the stimulus are preserved
by the response and as a tool for comparing different encoding models.
For example, we can decode a spike train using different models (e.g., in-
cluding versus ignoring spike history effects) and examine which encoding
model allows us to best decode the true stimulus (Pillow et al., 2005, 2008).
Such a test may in principle give a different outcome from a comparison
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Figure 1: Illustration of Bayesian decoding paradigm and point process en-
coding model. (A) Bayesian decoding involves inference about the stimulus x
using the observed spike times r and a specified encoding model. (B) Schematic
of the generalized linear model (GLM) encoding model used for the decoding
examples shown in this article. The model parameters {ki } and {hi j } relate the
stimulus and spike history to the instantaneous spike probability and can be
fit using maximum likelihood. For decoding applications, the fitted model pro-
vides the stimulus likelihood, p(r | x), which is combined with the prior p(x) to
form the posterior p(x | r), which is maximized to obtain the estimate x̂MAP .

that focuses on two encoding models’ accuracy in predicting spike train
responses (Latham & Nirenberg, 2005).

However, computing this Bayes-optimal solution can present computa-
tional difficulties. For example, computing the optimal Bayesian estimator
under the squared-error cost function requires the computation of a con-
ditional expectation of the signal x given the observed spike response,
E[x|spikes], which in turn requires that we compute d-dimensional inte-
grals (where d = dim(x)). Thus, most previous work on Bayesian decoding
of spike trains has focused on either low-dimensional signals x (Sanger,
1994; Maynard et al., 1999; Abbott & Dayan, 1999; Karmeier, Krapp, &
Egelhaaf, 2005) or situations in which recursive techniques may be used
to perform these conditional expectation computations efficiently, using ei-
ther approximate techniques related to the classical Kalman filter (Zhang,
Ginzburg, McNaughton, & Sejnowski, 1998; Brown, Frank, Tang, Quirk, &
Wilson, 1998; Barbieri et al., 2004; Wu et al., 2004; Srinivasan, Eden, Willsky,
& Brown, 2006; Wu, Kulkarni, Hatsopoulos, & Paninski, 2009; Yu, Cun-
ningham, Shenoy, & Sahani, 2007; Paninski et al., in press) or variants of
the particle filtering algorithm (Brockwell, Rojas, & Kass, 2004; Kelly & Lee,
2004; Shoham et al., 2005; Ergun, Barbieri, Eden, Wilson, & Brown, 2007;
Brockwell, Kass, & Schwartz, 2007), which is exact in the limit of an infinite
number of particles. While this recursive approach is quite powerful, unfor-
tunately its applicability is limited to cases in which the joint distribution
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of the signal x and the spike responses has a certain Markov tree decompo-
sition (e.g., a hidden Markov model or state-space representation; Jordan,
1999).

Here we explore conditions under which certain well-known approxima-
tions to the posterior density are applicable without any such tree decom-
position assumptions and which remain tractable even when the stimulus
x is very high dimensional. The idea is to compute the maximum a posteriori
(MAP) estimate xmap. This estimate is Bayesian in the sense that it incor-
porates knowledge of both the prior distribution p(x) and the likelihood
p(r | x), which is the conditional probability of the observed spike train re-
sponses r given the stimulus x.1 However, computing xmap requires only
that we perform a maximization of the posterior instead of an integration.
In the cases we examine here, the posterior is often easier to exactly maxi-
mize than to integrate. We discuss related efficient methods for integration
of the posterior in the companion article in this issue by Ahmadian, Pillow,
and Paninski (2011).

We begin by introducing the forward encoding model we use to calculate
the encoding distribution p(r | x). This model incorporates stimulus depen-
dence and spike history effects (such as refractoriness and adaptation) and
may also include multineuronal terms corresponding to excitatory or in-
hibitory effects that the activity of one cell has on another. The model has
a key concavity property that makes maximization in x highly tractable
and, moreover, leads to an accurate and simple gaussian approximation to
the posterior p(x | r), which allows us to quantify the fidelity with which
various stimulus features are encoded. Finally, this approximation can be
integrated analytically, which allows us to efficiently estimate the mutual
information I [x; r] between the high-dimensional stimulus x and the re-
sponse r and optimally detect change points: times at which some property
of the distribution from which the stimuli are drawn (e.g., the mean or
variance) undergoes a change. Each of these applications is illustrated with
several examples in the sections that follow.

2 Encoding Model

We model a neural spike train as a point process generated by a gener-
alized linear model (GLM; Brillinger, 1988; McCullagh & Nelder, 1989;
Paninski, 2004; Truccolo, Eden, Fellows, Donoghue, & Brown, 2005). This
model class has been discussed extensively elsewhere. Briefly, this class is a
natural extension of the linear-nonlinear-Poisson (LNP) model used in re-
verse correlation analyses (Simoncelli, Paninski, Pillow, & Schwartz, 2004),
with close connections to biophysical models such as the integrate-and-fire

1The MAP estimate is also Bayes optimal under a “zero-one” loss function, which
rewards only the correct estimate of the stimulus and penalizes all incorrect estimates
with a fixed penalty.
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model (Paninski, Pillow, & Simoncelli, 2004; Paninski, 2006). It has been
applied in a variety of experimental settings (Brillinger, 1992; Dayan &
Abbott, 2001; Chichilnisky, 2001; Paninski, Fellows, Shoham, Hatsopou-
los, & Donoghue, 2004; Truccolo et al., 2005; Pillow et al., 2008; Gerwinn,
Macke, Seeger, & Bethge, 2008; Stevenson et al., 2009; Truccolo, Hochberg, &
Donoghue, 2010). Figure 1B shows a schematic of this model’s parameters
for two coupled neurons. The model is summarized as

λi (t) = f
(

ki · x(t) +
∑

j,α

hi j (t −tjα) + bi

)
, (2.1)

where λi (t) denotes the conditional intensity (or instantaneous firing rate)
of the ith cell at time t, ki is the cell’s linear receptive field, bi is an additive
constant determining the baseline spike rate, hi j (t) is a postspike effect from
the j th to the ith observed neuron in the population of cells, and tjα is the
αth spike from the j th neuron, where the sum is taken over all past spike
times tjα < t. The hi i (t) term (corresponding to the ith cell’s own spikes)
can be thought of as a linear filter acting on the cell’s own spike history and
can account for refractory effects, burstiness, firing rate adaptation, and so
on, depending on the shape of hi i (t). The hi j (t) terms from the other cells
correspond to inter-neuronal interaction effects and may be excitatory or
inhibitory, or both.

Under one physiological interpretation of this model, known as a spike-
response or soft-threshold integrate-and-fire model, the net linearly filtered
input (i.e., the argument to f ) is regarded as the leaky integral of input
currents, which specifies a nondimensionalized intracellular voltage; f con-
verts this voltage to an instantaneous probability of spiking, which increases
monotonically as a function of the height of voltage above threshold (Plesser
& Gerstner, 2000; Paninski, 2006).

If the function f (u) is convex and log f (u) is concave in the argument u
(e.g., f (u) = exp(u)), then the log-likelihood function

L(x, θ ) = log p(r | x, θ ) =
∑

i,α

log λi (tiα) −
∑

i

∫ T

0
λi (t) dt + const. (2.2)

is guaranteed to be a concave function of either the stimulus x or the model
parameters θ = {{ki }, {hi j }, {bi }}, no matter what spike data r are observed
(Paninski, 2004), where [0, T] is the time interval on which the responses are
observed.2 Log concavity with respect to model parameters makes it easy

2Note that the log-likelihood function is separately, not jointly, concave in x and the
model parameters; that is, L is concave in the stimulus x for any fixed data r and parameters
θ⃗ and concave in the parameters θ for any fixed observed r and x.
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to fit the model, since concave functions on convex parameter spaces have
no nonglobal local maxima. We can therefore use simple gradient ascent
techniques (e.g., conjugate gradients or Newton’s method; Press, Teukolsky,
Vetterling, & Flannery, 1992) to compute the maximum likelihood estimate
of the model parameters θ̂ .3

One should note that this restriction on the nonlinearity f (·) (i.e., that f (·)
must be convex and log concave) is nontrivial. In particular, two important
cases are ruled out:

1) Saturating nonlinearities (e.g., f (x) = tanh(x))
2) Nonmonotonic nonlinearities (e.g., the squaring nonlinearity f (x) =

x2)

The first restriction turns out to be relatively minor, since we may enforce
saturating firing rates by choosing the spike history function hi i (·) to be
strongly inhibitory for small times (enforcing an absolute refractory period;
Berry & Meister, 1998; Paninski, 2004). The second restriction is more severe
(see the end of section 7.1 for further discussion of this point).

3 MAP Estimation

To compute xmap we need to maximize the posterior over the stimulus given
the data:

p(x | r) = 1
Z

p(r | x)p(x)

as a function of x, where Z is a normalizing constant that does not depend
on x. This is equivalent to maximizing

log p(x | r) = log p(r | x) + log p(x) + const. (3.1)

As discussed above, the log-likelihood term log p(r | x) is concave in x for
any observed spike data r. Since the sum of two concave functions is itself
concave, it is clear that this optimization problem will be tractable whenever
the log-prior term log p(x) is also a concave function of x (Paninski, 2004). In
this case, any ascent algorithm is guaranteed to return the optimal solution,

xmap ≡ arg max
x

log p(x | r),

3Note that the GLM is not the only model with this useful concavity property; for ex-
ample, the more biophysically motivated noisy leaky integrate-and-fire (IF) model has the
same property (Pillow, Paninski, & Simoncelli, 2004; Paninski, Pillow, & Simoncelli, 2004),
and all of the methods introduced here apply equally well in the IF context. However, for
simplicity, we restrict our attention to the GL model here.
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since x lies within a convex set (the d-dimensional vector space). Note that
this optimal solution xmap is in general a nonlinear function of the data r.

We should emphasize that log concavity of the stimulus distribution
p(x) is a restrictive condition (Paninski, 2005). For example, log-concave
distributions must have tails that decrease at least exponentially quickly,
ruling out heavy-tailed prior distributions with infinite moments. However,
the class of log-concave distributions is quite large, including (by definition)
any distribution of the form

p(x) = exp(Q(x))

for some concave function Q(x); for example, the exponential, triangular,
uniform, and multivariate gaussian (with arbitrary mean and covariance)
distributions may all be written in this form. In particular, any experiment
based on the white noise paradigm, in which a gaussian signal of some mean
and a white power spectrum (or more generally, any power spectrum) are
used to generate stimuli (see, e.g., Marmarelis & Marmarelis, 1978, or Rieke
et al., 1997 for many examples), may be easily analyzed in this framework.
Of course, in principle we may still compute xmap in the case of nonconcave
log priors; the point is that ascent techniques might not return xmap in this
case, and therefore computing the true global optimizer xmap may not be
tractable in this more general setting.

3.1 Numerical Implementation. We have shown that ascent-based
methods will succeed in finding the true xmap, but it remains to show that
these operations are tractable and can be performed efficiently. To com-
pute xmap, we may employ Newton-Raphson or conjugate–gradient ascent
methods with analytically computed gradients and Hessian, which can be
specified as follows.

Let Ki denote the matrix implementing the linear transformation
(Ki x)t = ki · x(t), the projection of the stimulus onto the ith neuron’s stim-
ulus filter. (If ki is a purely temporal filter, then Ki is a Toeplitz matrix
with a shifted copy of ki in each row). Ki x is thus the vector of stimulus-
dependent inputs into the nonlinearity for neuron i over the time window
in question. Combining our expressions for the log likelihood (see equation
2.2) and the log-posterior (see equation 3.1), it is clear we need to minimize
an expression of the form

−log p(x | r) = −
∑

i,t

ri (t) log ft((Ki x)t) +
∑

i,t

ft((Ki x)t) dt −log p(x),

(3.2)

where for convenience we have abbreviated the time-varying stimulus-
dependent rate ft[(Ki x)t] = f [(Ki x)t +

∑
j,α hi j (t −tjα) + bi ]. If we let ri

denote a (discretized) vector representation of the ith neuron’s spike train
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and let fi and gi denote vector versions of ft((Ki x)t) and log ft((Ki x)t), re-
spectively, we can rewrite this as

−log p(x | r) =
∑

i

(
−rT

i gi + 1T fi dt
)
−log p(x). (3.3)

The contribution to the gradient and Hessian (second-derivative matrix)
of the negative log likelihood from a single neuron is therefore given by
simple matrix multiplications:

∇i = Ki (f′
i dt −ri .g′

i ) (3.4)

J i = K T
i diag[f′′

i dt −ri .g′′
i ]Ki , (3.5)

where f′
i , g′

i and f′′
i , g′′

i denote the first and second derivatives of fi and gi with
respect to their arguments, and a.b denotes pointwise multiplication of the
vectors a and b. Note that by the simultaneous convexity and log concavity
of f (·) and the nonnegativity of ri (t), the vector f′′

i dt −ri .g′′
i is nonnegative,

ensuring that the Hessian J i is positive semidefinite and therefore that the
negative log likelihood is convex (i.e., the log likelihood is concave). To
obtain the gradient ∇ and Hessian J of the full posterior, these terms are
simply summed over neurons and added to the gradient and Hessian of
the negative log prior. For a gaussian prior with mean µ and covariance $,
the gradient and Hessian of the log prior are given by $−1(x −µ) and $−1,
respectively.

While in general it takes O(d2) steps to compute the Hessian of a d-
dimensional function (where d = dim(x) here), the Hessian of log p(x | r)
may be computed much more quickly. Most important, the log-likelihood
Hessian J i (see equation 3.5) is a banded matrix, with the width of the band
equal to the length of the filter ki . Additionally, the Hessian of the log prior
can be computed easily in many important cases. For example, in the case of
gaussian stimuli, this Hessian is constant as a function of x and can be pre-
computed just once. Thus, in fact, the amortized computational cost of this
Hessian term is just O(d) instead of the O(d2) time required more generally.

Optimization via Newton-Raphson or conjugate gradient ascent re-
quires O(d3) time in general (Press et al., 1992). In special cases, however,
we may reduce this significantly. For example, Newton’s optimization
method requires that we solve equations of the form J x = ∇ for an
unknown vector x, where J is the Hessian matrix and ∇ is the gradient
of the negative log posterior. If the Hessian of the log prior in our case
is banded, then the full Hessian J will be banded (since the likelihood
Hessian J is banded, as discussed above), and therefore each Newton
iteration can be performed in O(T) time, where T is the temporal duration
of the stimulus x (and therefore d is in most cases proportional to T ; see
Fahrmeir, 1992; Paninski et al., in press, for further discussion). We have
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found empirically that the number of Newton iterations does not scale
appreciably with T , so in these cases, the full optimization requires just
O(T) time. These methods may be adapted to handle some settings where
a convex constrained optimization over x is required (Koyama & Paninski,
in press) or where the log-prior Hessian is not banded but its inverse is (see
Ahmadian et al., 2011, the companion article). (We discuss several related
examples in more detail below; see especially Figures 5–7.)

3.2 Perturbative Analysis and Gaussian Approximation. The esti-
mate xmap proves to be a good decoder of spike train data in a variety
of settings, and the ability to tractably perform optimal nonlinear sig-
nal reconstruction given the activity of ensembles of interacting neurons
is quite useful. However, computing xmap gives us easy access to sev-
eral other important and useful quantities. In particular, we would like
to quantify the uncertainty in our estimates. One easy way to do this is
by perturbing xmap slightly in some direction y (say, xmap + ϵy, for some
small positive scalar ϵ) and computing the ratio of posteriors at these two
points p(xmap | r)/p(xmap + ϵy | r) or, equivalently, the difference in the log
posteriors log p(xmap | r) −log p(xmap + ϵy | r). If the posterior changes sig-
nificantly with the perturbation ϵy, then this perturbation is highly “de-
tectable”; it is highly discriminable from xmap. Conversely, if the change
in the posterior is small, it is difficult to discriminate between xmap and
xmap + ϵy on the basis of the data r. We can expect our estimate xmap to be
highly variable in this direction and the corresponding confidence interval
in this direction to be wide.

Assuming the log-posterior log p(xmap | r) is smooth, for sufficiently
small stimulus perturbations ϵ a second-order expansion suffices to ap-
proximate the log posterior:

log p(xmap + ϵy | r) = log p(xmap | r) −ϵ2

2
yT J y + o(ϵ2), (3.6)

where J denotes the Hessian of −log p(x | r) with respect to x, evaluated
at xmap. The expansion lacks a first-order term since the first derivative is
(by definition) zero at the optimizer xmap. The quadratic term may be most
easily interpreted by computing the eigenvectors of J (Huys, Ahrens, &
Paninski, 2006): eigenvectors corresponding to large eigenvalues represent
stimulus directions y along which the curvature of the posterior is large
(i.e., directions along which perturbations are highly discriminable), and
those corresponding to small eigenvalues represent directions that are only
weakly discriminable.

This second-order description of the log-posterior corresponds to a gaus-
sian approximation of the posterior (known in the statistics literature as a
Laplace approximation; Kass & Raftery, 1995):

p(x | r) ≈ N (xmap, C), (3.7)
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where the mean of this gaussian is the MAP estimate xmap and the covariance
matrix is C = J −1. We may use this approximate posterior covariance matrix
C to quantify our uncertainty about x remaining after the spiking data
r have been observed. In general applications, of course, such a gaussian
approximation is not justified. However, in our case, we know that p(x | r) is
always unimodal (since any concave, or log-concave, function is unimodal;
Boyd & Vandenberghe, 2004) and at least continuous on its support (again
by log concavity). If the nonlinearity f (u) and the log-prior log p(x) are
smooth functions of their arguments u and x, respectively, then the log-
posterior log p(x | r) is necessarily smooth as well. In this case, the gaussian
approximation is often well justified, although the posterior will never be
exactly gaussian. (See, e.g., Minka, 2001; Yu et al., 2007; Koyama & Paninski,
in press, for a discussion of alternate gaussian approximations based on
expectation propagation. See Figure 3 for some comparisons of the true
posterior and this gaussian approximation.)

3.3 MAP Decoding: Examples. Figures 2 through 7 show several appli-
cations of MAP decoding. Figure 2 provides a straightforward example of
MAP estimation of a 30-sample stimulus using either a 2-cell (A) or a 20-cell
(B) simulated population response. In this case, the stimulus (black trace)
consisted of 1 second (30 samples) of gaussian white noise, refreshed every
33 ms. Spike responses (dots) were generated from a point-process encod-
ing model (see Figure 1), with parameters fit to responses of macaque retinal
ganglion ON and OFF cells (Pillow et al., 2008). Gray and black dotted traces
show the MAP estimate computed using the 2-cell and 20-cell population
response, respectively. The shaded regions (see Figures 2C and 2D) show
one standard deviation of the marginal posterior uncertainty about each
stimulus value, computed as the square root of the diagonal of the inverse
Hessian J −1 (i.e., the square root of the Hessian-based approximation to the
marginal variance).

Note, however, that this shading provides an incomplete picture of our
uncertainty about the stimulus. The posterior p(x | r) is a probability distri-
bution in 30 dimensions, and its curvature along each of these dimensions
is captured by the Hessian J . Eigenvectors associated with the smallest
and largest eigenvalues of J −1 correspond to directions in this space along
which the distribution is most and least tightly constrained; these can be
conceived as “features” that are encoded with the “best” and “worst” fi-
delity by the population response, respectively. (Obviously these features
are much more interpretable if they correspond to “isolated” eigenvalues
that are well separated at the bottom or top of the distribution; otherwise,
linear combinations of features associated with nearby eigenvalues will be
encoded with approximately the same fidelity.) For both populations, the
eigenvalues saturate at 1, which is also the stimulus prior variance, reflect-
ing the fact that the response carries no information about the stimulus
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Figure 2: Illustration of MAP decoding on a 1 sec gaussian white noise stim-
ulus. (A) Spike times generated by a single ON cell (gray dots) and a single
OFF cell (black dots) in simulation. Black solid trace shows the true stimulus,
and the gray dashed trace is the MAP estimate xmap given these spikes (esti-
mated on a time lattice four times finer than the stimulus lattice). (B) Simulated
spike trains from 10 ON and 10 OFF neurons in response to the same stimulus,
and the corresponding MAP estimate (dashed). (C, D) MAP estimates under
2-neuron and 20-neuron populations, replotted with the gray region represent-
ing ± 1 standard deviation of the posterior uncertainty about stimulus value.
These error bars may also be computed in O(T) time (Paninski et al., in press).
(Below) Stimulus features that are best and worst constrained by the observed
spike data, determined as the eigenvectors of the inverse Hessian with small-
est and largest eigenvalue, respectively. Perturbing xmap with the best (worst)
feature causes the fastest (slowest) falloff in the posterior. (E) Eigenspectrum of
J −1 at the MAP estimate from both populations (gray = 2; black = 20 neurons).
The sorted (square roots of the) eigenvalues characterize the standard devia-
tion of the posterior p(x | r) along stimulus axes defined by the corresponding
eigenvectors. Note that the high eigenvalues (corresponding to high-frequency
stimulus information) remain poorly constrained even in the 20-neuron case
due to the low-pass nature of the stimulus filter k.

along these axes (which arises from a high-temporal-frequency cutoff in
retinal ganglion cell responses).

Implicit in this analysis of coding fidelity is the gaussian approximation
to the posterior introduced above (see equation 3.7). If the shape of the
true posterior is poorly approximated by a gaussian (i.e., the log posterior
is poorly approximated by a quadratic), then the Hessian does not fully
describe our posterior uncertainty. Conversely, if the posterior is approxi-
mately gaussian, then the posterior maximum is also the posterior mean,
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Figure 3: Comparison of true posterior (solid) with gaussian approximation
(dashed). (Top) 1D slices through p(x | r) and the gaussian approximation along
axes corresponding to best and most poorly encoded stimulus features (i.e.,
axes of least and greatest posterior variance), for the 2-cell and 20-cell responses
shown in Figures 2A (left) and 2B (right). (Bottom) Same distributions plotted
on a log scale, showing some mismatch in the tails and skewness as the posterior
grows sharper.

meaning that xmap closely matches the Bayes’ least squares (BLS) estimator,
which is optimal under mean squared error loss. Figure 3 shows a com-
parison between the true posterior and the gaussian approximation around
xmap for the 2-cell and 20-cell population responses shown in Figure 2. Al-
though log scaling of the vertical axis (bottom row) reveals discrepancies in
the tails of the distribution, the gaussian approximation generally provides
a close match to the shape of the central peak and an accurate description
of the bulk of the probability mass under the posterior (top row). Analysis
with more computationally expensive Monte Carlo methods indicates that
xmap is usually quite closely matched to the posterior mean if the prior p(x)
is smooth (for details, see Ahmadian et al., 2011, the companion article).

Next, we examined the role of the stimulus prior in MAP decoding, using
stimuli generated from a nonindependent gaussian prior. Figure 4 shows
an example in which a gaussian stimulus was drawn to have a power
spectrum that falls as 1/F (“pink noise”), meaning that low frequencies
predominate and the stimulus is strongly correlated at short timescales. The
true stimulus is plotted in black, and the left panel shows xmap computed
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Figure 4: Illustration of MAP decoding under a correlated prior. (Top) Spike
response of an ON cell (gray dots) and OFF cell (black dots) to a gaussian stim-
ulus with 1/F temporal correlation structure. (Middle) True stimulus (black)
and MAP estimate (dashed) under an independent prior. (Bottom) True stim-
ulus and MAP estimate under the correct (1/F ) stimulus prior. (Right) MAP
estimates computed from the responses of 20-neuron population. Light gray
regions show ± 1 SD confidence interval, computed using the square root of the
diagonal elements of the inverse Hessian matrix.

from the response of two neurons, either assuming that the stimulus prior
was independent, but with the correct stationary marginal variance (top),
or using the correct 1/F prior (bottom). Note that the likelihood term is
identical in both cases: only the prior gives rise to the difference between
the two estimates. The right panel shows a comparison using the same
stimulus decoded from the responses of 10 ON and 10 OFF cells. This
illustrates that although both estimates converge to the correct stimulus as
the number of neurons increases, the prior still gives rise to a significant
difference in decoding performance.

In our next example, presented in Figures 5 and 6, we consider MAP
decoding of a binary 64-pixel, 120 Hz white noise movie presented to a
group of 27 retinal ganglion cells, based on the experimentally recorded
spike trains of these cells. (See Pillow et al., 2008, for experimental details
and a full description of the estimated encoding model parameters here.)
On each movie frame, each pixel was independently and randomly given
high or low luminance (± c) with equal probability. The true distribution
describing this stimulus ensemble is therefore binary and is not log concave.
To exploit the efficient optimization methods discussed here, we used the
closest log-concave relaxation of this binary prior (specifically, a uniform
prior on the interval [−c, c]) as a surrogate prior distribution for decoding.
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Figure 5: Decoding of a binary white noise movie based on experimentally
recorded spike trains of a group of 27 retinal ganglion cells. The stimulus was
an 8 pixel × 8 pixel movie, in which at every time step (the movie refresh rate
was 120 Hz), the intensity of each pixel was independently sampled from a
binary distribution with a contrast of 0.5. We decoded a portion of the movie
with a duration of 1 second (dim(x) here was therefore 120 × 64 = 7680), based
on the recorded spike trains of 16 OFF and 11 ON cells whose receptive fields
imperfectly covered the 8 × 8 pixel movie area. The GLM parameters used in
the decoding were previously fit to 7 minutes of the same data (see Pillow
et al., 2008, for the details of the experimental recordings and the fit model
parameters). The top and bottom panels show the true and decoded movies,
respectively. Each vertical slice shows the contrast of the 64 pixels, linearly
ordered, at the corresponding time step. The positive (negative) luminance
pixels are shown in white (black). To find the MAP using the fast O(T) methods,
we used a log-concave flat prior with support on [−c, c] (where c = 0.5 is the
contrast) along every dimension. To obtain an estimate with binary values at
each pixel, we then truncated each component of the thus obtained MAP to
the nearer value in {−c, c}. Since the cell receptive field centers did not cover
the entire movie area and the movie had a relatively fast refresh rate (well
above the effective temporal band limit imposed by the stimulus filter matrix
K ), the SNR was relatively low, and therefore the decoding error was high.
The Hamming distance, per frame per pixel, between the true and the decoded
movies was 0.43. (See the companion article by Ahmadian et al., 2011, and
Paninski et al., in press, for further examples, including a demonstration that
the filtered stimulus K x can in fact be decoded quite accurately here.)



Model-Based Neural Decoding Methods 15

0 100 200 300 400 500 600 700 800 900 1000

- 0.5

0

0.5

time(ms)

0 100 200 300 400 500 600 700 800 900 1000

- 0.5

0

0.5

time(ms)

Figure 6: A pixel from the movie decoding example of Figure 5, singled out
to illustrate the effect of the prior on binary stimulus decoding. Plots show the
untruncated decoders’ estimates (gray traces) for the true time-varying contrast
(black traces) of the selected pixel. The MAP estimate was obtained using a
flat prior (top) and a gaussian prior with the same contrast (SD = 0.5, bottom).
In regions where information carried by the spike trains regarding the true
stimulus is low (e.g., due to low firing rate), the decoder with gaussian prior
shrinks the estimate toward the prior mean (zero), whereas the flat prior decoder
tends to stick to the boundaries of the prior support. (For better visual clarity,
in the top panel, we have shifted the flat prior decoder’s estimate up by a small
factor so that it does not cover the true stimulus curve when it does in fact
coincide with it.) For this pixel, MAP decoding achieves an SNR of 0.82 under a
flat prior versus an SNR of 1.25 under a gaussian prior, indicating that shrinkage
induced by the gaussian prior is effective in reducing the mean squared error
of the MAP estimate.

Finding the MAP with this prior corresponds to a (concave) constrained
optimization problem. To handle this constrained problem using the O(T)
decoding methods explained in section 3.1, we used an interior point (“bar-
rier”) method (Boyd & Vandenberghe, 2004). In this method, instead of
imposing the hard constraints implicit in the prior, we add a soft loga-
rithmic barrier function to the log likelihood. More precisely, we obtain an
auxiliary estimate, xϵ , as

xϵ = arg max
x

{

log p(r | x) + ϵ
∑

i

[log (c −xi ) + log (c + xi )]

}

, (3.8)
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where the last sum is over all the components of x. (We decoded 1 sec of the
movie here, so the stimulus dimensionality is 120 × 64 = 7680.) The barrier
stiffness parameter, ϵ, is iteratively reduced to zero in an outer loop, letting
xϵ converge to the true solution of the constrained problem. The key to
the efficiency of this method is that the Hessian of the logarithmic terms
proportional to ϵ in equation 3.8) is diagonal. Therefore, the total Hessian
of the modified objective function remains banded (since, as explained in
section 3.1, the Hessian of the log likelihood is banded), and the Newton-
Raphson method for finding xϵ can be found in O(T) computational time.
(See Koyama & Paninski, in press, and Paninski et al., in press, for further
discussion.)

In this case, after finding the MAP, xmap, with the flat prior, we truncated
each component of xmap to the closer value in {−c, c} to obtain an estimate
with binary values. Figure 5 shows the true and decoded stimuli in raster-
ized form; these stimuli can also be seen in movie form in the supplemen-
tal materials (available online at http://www.mitpressjournals.org/doi/
suppl/10.1162/NECO a 00058). Note that the decoded movie displays spa-
tiotemporal correlations that are absent in the original white noise movie;
this illustrates the fact that the covariance of the conditional stimulus dis-
tribution p(x | r) is often significantly different from that of the prior p(x).
Also note that much of the high-frequency detail of the movie is lost, due
again to the low-pass characteristics of the stimulus filter matrix K (see
Figure 2e).

In Figure 6, we examine the effect of using a gaussian surrogate prior
instead of a flat prior, as described above. We performed MAP decoding
under a gaussian surrogate prior, with mean and variance set to match the
first two moments of the flat prior. Decoding under this prior was performed
using the O(T) unconstrained method described in section 3.1. The gaussian
prior has a constant curvature in the log domain; thus, in regions where
information carried by the spike trains regarding the true stimulus is low
(e.g., due to low firing rate), this decoder shrinks the estimate toward the
prior mean (zero). The uniform prior, on the other hand, is flat (completely
uninformative) away from the boundaries ± c, and therefore the constrained
decoder has a tendency to “stick” to either c or −c, as weak information from
the likelihood term p(r | x) shifts the gradient of the log-posterior slightly
positive or negative, respectively. (See the companion article by Ahmadian
et al., 2011, for further discussion of this effect.)

Figure 7 shows an example of MAP estimation applied to a high-
dimensional spatial stimulus. We presented a 1024-dimensional stimulus (a
32 x 32 image, shown in Figure 7A) to a set of 1024 simulated neurons (512
ON and 512 OFF cells, with center-surround receptive fields arranged in
complementary square lattices tiling the image plane). Here we once again
compared MAP decoding performance under an independent gaussian
prior and a correlated gaussian prior with 1/F 2 scaling of spatial frequency
components, a commonly used description of the power spectrum of
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Figure 7: Decoding of a high-dimensional naturalistic spatial image. (A) De-
coding of a 32 × 32 image from the responses of a population of 1024 simulated
retinal ganglion cells. Intensity plot (center) shows the spike count of each neu-
ron (512 ON, 512 OFF cells with center-surround receptive fields spanning the
1024-dimensional stimulus space) in response to a brief (0.5 s) presentation of
the image. Right: Estimate of the stimulus based on MAP decoding of the pop-
ulation response under an independent gaussian prior (above) and gaussian
prior with 1/F 2 spatial correlations (below). (B) MAP decoding in a stimulus
space with higher dimensionality (dim(x) = 16,384) than the number of neurons
(1024). Receptive fields were spatially up-sampled by a factor of 4 so that tiling
of the image plane matched that in A. Decoding under a 1/F 2 gaussian prior
over the full stimulus space (right) leads to higher-fidelity decoding than for
the 32 × 32 image, despite having the same low-dimensional representation of
the signal.

natural images. Decoding under the correlated prior is significantly better
than under an independent prior, even though a 1/F 2 gaussian provides
a relatively impoverished model of natural image statistics (Simoncelli,
2005). This suggests that significant improvements in decoding of natu-
ralistic stimuli could be obtained by coupling a more powerful model of
image statistics to an accurate neural encoding model under the Bayesian
framework.

We also performed decoding of a much higher-dimensional 128 × 128
stimulus, using the responses of 1024 cells (see Figure 7B). Estimating xmap in
the full stimulus space here is computationally prohibitive; for instance, the
Hessian has 1284 > 108 elements. However, in some cases, we can proceed
by working within a subspace determined by the prior covariance and the
receptive fields of the neurons recorded. We begin by assuming that the log
prior may be written in the form

log p(x) = q (xTC−1x), (3.9)

with C−1 a positive definite matrix; such a log prior can specify any concave,
elliptically symmetric function of x (Lyu & Simoncelli, 2009). Similarly, note
that the log likelihood may be written as log p(r | x) = w(K x) for a suitable
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function w(·), emphasizing that this likelihood term depends on only x
through a projection onto a subspace spanned by the columns of the filter
matrix K (a short, fat matrix, if [# stimulus dimensions] > [# neurons]).
Thus we write the log posterior as

log p(x | r) = q (xTC−1x) + w(K x). (3.10)

To maximize this function, it turns out we may restrict our attention
to a subspace; that is, we do not need to perform a search over the full
high-dimensional x. To see this, we use a linear change of variables,

y = A−1x,

where

AAT = C.

This allows us to rewrite the log posterior as

q (yT y) + w(K Ay). (3.11)

By the log concavity of the prior p(x), the function q (u) must be a nonincreas-
ing function of u > 0. This implies, by the representer theorem (Schölkopf &
Smola, 2002), that we may always choose an optimal y in the space spanned
by the rows of K A; this is because increasing y in a direction orthogonal to
K Adoes not change the second term in the log posterior but cannot increase
the first term (since q (·) is nonincreasing).

So we may perform our optimization in the lower-dimensional subspace
spanned by the rows of K A. If B is a matrix whose columns form an or-
thonormal basis for the row space of K A, we can rewrite the log posterior as

q (z⃗T z⃗) + w(K ABz⃗), (3.12)

where z⃗ is now a vector of dimensionality equal to the rank of K A. In
Figure 7B, this reduces the dimensionality of the search from 1282 = 16,384
to a much more feasible 1024.4 Once an optimal zmap is computed, we need
only set xmap = ABzmap.

The remaining problem is to compute the change-of-basis operator A
satisfying AAT = C. Naively, we could compute A via a Cholesky decom-
position of C, but this may be computationally infeasible given that A and

4Note that in general, this trick is useful only in the case N × T (the number of neurons
N times the number of time points in the linear filter T—i.e., the dimensionality of the
range space of K ) is significantly less than the number of stimulus dimensions d.



Model-Based Neural Decoding Methods 19

C are both d × d matrices, where d is the stimulus dimensionality (here
16,384). The problem can be solved much more easily in cases where we
have a known diagonalization of the prior covariance C = OT DO, where
O is an orthogonal matrix and D diagonal.

For example, in the case of a 1/F 2 gaussian prior, O and OT correspond
to the 2D Fourier and inverse-Fourier transform, respectively, and D is
a diagonal matrix with the weights 1/F 2 (where F is the frequency of
the corresponding Fourier component). Thus, we can use A = OD1/2 OT ,
which is easy to compute since D is diagonal. Moreover, we can compute
K A without explicitly representing A, since we can use the fast-Fourier
transform in place of multiplication by O (and inverse transform in place of
multiplication by OT ). Thus, we may in some cases tractably perform MAP
decoding even for very high-dimensional spatial stimuli x. Note, however,
that this trick is useful only in the case that we have a stimulus with higher
dimensionality than the number of recorded neurons.

4 Connections Between the MAP and the OLE

Several important connections exist between the MAP estimate and the
optimal linear estimator (OLE) (Bialek & Zee, 1990; Rieke et al., 1997). To
explore these connections, it is helpful to begin by examining a slightly
simpler model, where the MAP and the OLE coincide exactly. Assume for
a moment the following gaussian model for the spike train responses r:

ri ∼ N ((K x)i + b, σ 2); x ∼ N (0, C),

where (K x)i denotes the ith element of the vector K x. Here, the observed
responses are gaussian, with some baseline b. The filter matrix K controls
the dependence of the responses ri on the stimulus x; as above, K acts
as a convolution matrix corresponding to the linear filter k in the GLM.
In this case, it is easy to see that the MAP is exactly the OLE, since the
posterior distribution p(x | r) is gaussian, with covariance independent of
the observed r. In particular, in this case, the OLE and the MAP are both
given by

xole = xmap = (σ 2C−1 + K T K )−1 K T (r −b). (4.1)

This solution has several important and intuitive features. Let ∥k∥ denote
the norm of the filter k and c denote the stimulus contrast, so that C ∝
c2. First, in the low signal-to-noise regime (i.e., for high values of σ , or
equivalently small values of c∥k∥), the solution looks like (1/σ 2)CK T (r −b),
which is the convolution of r with k in the case that the stimulus covariance
C is white. Conversely, in the high-SNR regime, where c∥k∥ is much larger
than σ , the solution looks more like (K T K )−1 K T (r −b), where (K T K )−1 K T
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is the Moore-Penrose pseudo-inverse of K .5 Thus, in the high-SNR limit, the
MAP (and the OLE) effectively deconvolves r by k. Note in addition that,
as expected, the effect of the prior covariance C disappears in the high-SNR
limit, where the likelihood term dominates the prior term.

We can show that the same basic behavior (convolution in the low-
SNR regime and deconvolution in the high-SNR regime) holds in the GLM
and that the MAP and OLE—although not equivalent in general—coincide
exactly in the low-SNR limit. We provide a full derivation of this result in
appendix A, but we sketch the primary results here. The OLE is defined as

xole = (E[r0rT
0 ]−1E[r0xT ])T r0, (4.2)

where E[·] denotes expectation over the joint density p(r, x), r0 are the
mean-subtracted responses r0 = r −E[r] , and (as above) the stimulus is
distributed as x ∼ N (0, C).

For the OLE based on spike trains generated by the GLM, we need
to compute E[r0rT

0 ], the autocovariance of the response, and E[r0xT ], the
covariance of the response with the stimulus (which is equivalent to the
“spike-triggered average”). We show that in this case,

xole = CK T diag
[

f ′(b)./ f (b)
]

(r −dt f (b)) + o(c∥k∥) = xmap + o(c∥k∥),

(4.3)

which holds exactly in the low-SNR regime c∥k∥ → 0; here, a./b denotes
the pointwise quotient of the vectors a and b. Once again, for larger SNR, the
MAP displays pseudo-inverse-like behavior (see appendix A for details.)

In Figure 8, we show an explicit comparison of MAP and OLE decoding
performance as a function of contrast and the number of cells in the popu-
lation for spike trains generated by a GLM (see Figure 1). As expected from
our derivation, the errors in the OLE and MAP estimates converge at low
contrast (i.e., low SNR). However, the MAP significantly outperforms the
OLE at high contrast. The MAP estimator also outperforms the OLE when
employed with large numbers of cells, which corresponds to increasing the
effective SNR.

In the case of a GLM with an exponential nonlinearity, f (·) = exp(·),
the above formula can be simplified in a way that provides insight into
the decoding significance of model components such as a spike-history-
dependent term. Specifically, we have

xmap = CK T (
r −dt exp(b + Br)

)
+ o(||K ||), (4.4)

5Assuming, for simplicity, that K T K has full rank.
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Figure 8: Comparison of MAP and optimal linear decoding of simulated reti-
nal ganglion cell responses. Stimuli were 0.5 s segments of gaussian white noise
sampled at a frame rate of 15 Hz. The optimal linear decoding filter was fit via
linear regression for each contrast and population size. Performance was mea-
sured as the SNR, calculated as the ratio of the signal variance to the variance
of the reconstruction error, averaged over 200 stimulus segments drawn i.i.d.
from the prior. (Left) Decoding performance as a function of stimulus standard
deviation, using two cells (an uncoupled ON and OFF neuron). (Right) Decod-
ing performance as a function of population size, using a stimulus with contrast
c = 2. Each population contained an equal number of ON and OFF cells.

where B is a linear operator capturing the causal dependence of the response
on spike train history. Thus, we have the rather intuitive result that spike
history effects (to first order in K ) simply weight the baseline firing rate in
the MAP estimate (see Figure 9 for an illustration of this effect).

5 Computing Information-Theoretic Quantities

A number of previous authors have drawn attention to the connections
between the decoding problem and the problem of estimating how much
information (in the Shannon sense, Cover & Thomas, 1991) a population
spike train carries about a stimulus (Bialek et al., 1991; Rieke et al., 1997;
Warland et al., 1997; Barbieri et al., 2004). In general, estimating this mu-
tual information is quite difficult, particularly in high-dimensional spaces
(Paninski, 2003). But in the case that our forward model of p(r | x) is suffi-
ciently accurate, the methods discussed here permit tractable computation
of the mutual information. (See, e.g., Nemenman, Bialek, & de Ruyter van
Steveninck, 2004; Kennel, Shlens, Abarbanel, & Chichilnisky, 2005 for alter-
nate approaches toward estimating the information that are model based,
but in a more nonparametric sense than the methods developed here.)
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Figure 9: (Left) Three different postspike recovery functions (exponentiated
post-spike kernels), which multiply the conditional intensity function following
a spike. These induce spike history effects ranging from none (light gray) to a
relative refractory period of approximately 25 ms (black). (Right) MAP decoding
of a single set of spike times (dots) under three GLMs that differ only in their
postspike kernels (shown at left). Spike bursts are interpreted quite differently
by the three models, indicating large stimulus transients under the model with
strong refractory effects (since for a burst to have occurred the stimulus must
have been large enough to overcome the refractory effects), whereas isolated
spikes (i.e., near 250 ms) have nearly the same decoded interpretation for all
three models.

We can write the mutual information (MI) as

I [x; r] = H[x] −H[x | r]

= H[x] −
∫

p(r)
(

−
∫

p(x | r) log p(x | r)d x
)

dr.

The first term, the prior stimulus entropy, depends on only the prior stim-
ulus distribution p(x), which in the case of artificial stimuli is set by the
experimenter (and whose entropy may typically therefore be computed
exactly). In the case of natural stimulus ensembles, we can draw an arbi-
trarily large number of samples from p(x) and may therefore in principle
still consider computing H[x] to be a solvable problem.

The second term, sometimes referred to as the noise entropy (Strong,
Koberle, de Ruyter van Steveninck, & Bialek, 1998), is the average residual
entropy in x conditional on the spike data r. Although residual entropy
is generally much more difficult to compute, in the case that our gaussian
approximation to the posterior is acceptably accurate, we can apply a simple
short-cut by using the well-known formula for the entropy of a gaussian.
Namely, for any specific instantiation of the observed spike data r, we have

−
∫

p(x | r) log p(x | r)dx ≈ −1
2

log |J | + d
2

log(2πe), (5.1)
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where we have used the formula for the entropy of a gaussian distribution
with covariance matrix J −1 (Cover & Thomas, 1991). As above, J denotes
the Hessian of the negative log posterior computed at xmap. (Similar Fisher
information–based approximations to the Shannon information have been
discussed in many other contexts, e.g. Clarke & Barron, 1990; Brunel &
Nadal, 1998.) We need only average this entropy over the data distribution
p(r) =

∫
p(x)p(r | x)dx. This averaging may be performed most easily using

standard Monte Carlo numerical integration techniques (Press et al., 1992;
Robert & Casella, 2005), that is, averaging this posterior-based entropy over
many stimulus-response pairs (with the stimulus drawn from the prior and
the response generated by the neural population).

Thus, to summarize, computing this approximation to the information
I [x; r] requires that we:

1. Draw independent and identically distributed (i.i.d) samples x j from
the stimulus distribution p(x)

2. Draw sample spike trains r j from the corresponding conditional dis-
tributions p(r | x j ), by either observing spike responses from a real
neuron or sampling spike responses from the point-process model

3. Compute the MAP estimate xmap(r j ) and Hessian J (r j ) corresponding
to the observed data r j

4. Compute the approximate posterior entropy (see equation 5.1)
5. Form the average over all of our Monte Carlo samples:

H[x | r] =
∫

p(r)
(

−
∫

p(x | r) log p(x | r) dx
)

dr

≈
∫

p(r)
(

−1
2

log |J (r)| + d
2

log(2πe)
)

dr

=

⎛

⎝ lim
N→∞

1
N

N∑

j=1

−1
2

log |J (r j )|

⎞

⎠ + d
2

log(2πe) = Ĥ[x | r]

(5.2)

6. Subtract the result from the prior entropy:

I [x; r] ≈ H[x] −Ĥ[x | r]

In practice, of course, the number of Monte Carlo samples N does not have
to tend to infinity, but merely has to be large enough to make the confidence
interval on the empirical average acceptably small. This method should give
accurate estimates of the information whenever the posterior p(x | r) may
be well approximated by a gaussian, as is the case for the examples analyzed
here (see Figure 3).

We can compare this estimate with a well-known lower bound on I [x; r],
which arises from a gaussian approximation to the residuals obtained under
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linear decoding (Bialek et al., 1991; Rieke et al., 1997). This bound may be
derived as follows. We use the data processing inequality,

H[x] −H[x | r] = I [x; r] ≥ I [x; x̂(r)] = H[x] −H[x | x̂],

where x̂ is any estimator of x given r, to establish that

H[x | r] ≤ H[x | x̂].

If we write out this conditional entropy, we see that

H[x | x̂] = Er

[
−

∫
p(x | x̂r) log p(x | x̂r)dx

]

≤ Er

[1
2

log |cov(x | x̂r)| + d
2

log(2πe)
]

(5.3)

≤ 1
2

log |Er[cov(x | x̂r)]| + d
2

log(2πe), (5.4)

where Er denotes expectation with respect to p(r). The first inequality fol-
lows from the fact that a gaussian has the highest entropy among all den-
sities with a given covariance (Cover & Thomas, 1991), and the second
inequality is Jensen’s (since the log determinant is a concave function).

This upper bound on H[x | r] provides a lower bound on I [x; r]. We
can estimate the last line of this bound numerically by drawing many
stimulus-response pairs {x j , r j }, computing residuals of the estimator x̂,6
given by χ j = x j −x̂ j , and then computing the covariance of these residuals,
E[χ jχ

T
j ]. We thus have

I [x; r] ≥ H[x] −
(

1
2

log
∣∣E

[
χ jχ

T
j
]∣∣ + d

2
log(2πe)

)
. (5.5)

Figure 10 shows a comparison of the lower bound obtained by this
method with an estimate of I [x | r] obtained directly from the gaussian
approximation to the posterior. For completeness, we also compare to the
lower bound obtained by using xmap instead of xole in the above derivation
(this second lower bound is guaranteed to be tighter if the MAP residuals
are smaller than those of the OLE, as we observed in Figure 8). For this exam-
ple, using the responses from 32 neurons stimulated a 60-sample gaussian
white noise stimulus, the lower bound obtained from the MAP residuals

6In most applications, this estimator x̂ is taken as the OLE, but any estimator that is a
function of the data r may be employed here.
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Figure 10: Model-based estimates of mutual information (MI). (Left) Estimates
of the information rate between a 60-dimensional stimulus (gaussian white
noise) and the spike responses from a 32-neuron population (16 ON and 16 OFF
simulated GLM neurons, with parameters fit to the data described in Pillow
et al., 2008), as a function of stimulus standard deviation (“contrast”). The OLE
and MAP residuals (black solid and dashed traces) can be used to compute a
lower bound on the MI (see text). The Laplace approximation can be used to
estimate MI by averaging the posterior entropy across stimulus-response pairs
(gray trace). (Middle) Bias in the MAP residual-based (black) and Laplace-based
(gray) estimators of MI at contrast = 4 as a function of the number of stimulus-
response pairs. Note that the residual-based estimate (black) does not actually
provide a lower bound on MI unless the estimate of the residual covariance
matrix has converged. (When [# stimuli] < [# dimensions], the residual-based
estimate is actually infinite.) Gray regions show four standard deviations of the
noise in estimating MI under both methods, based on 2000 bootstrap resam-
plings of the data. (Right) Variance of the same two estimators as a function of
the amount of data used.

is closely matched to the Laplace approximation-based estimate. However,
the latter estimate converges much more rapidly to the true information
and is free of bias even for small numbers of stimulus-response pairs. This
bias (middle panel, Figure 10) arises from the fact that the residual-based
estimate is not actually a lower bound unless the estimated covariance of
the residuals has adequately converged. For small numbers of stimulus-
response pairs, the residual covariance matrix is undersampled, leading
to an underestimate of the residual entropy (and an overestimate of MI).
The Laplace-approximation-based estimate of information is therefore an
accurate and data-efficient alternative to the lower-bound estimates based
on the OLE or MAP residuals.

The MAP-based lower bound on mutual information appears to be
relatively accurate for a population of neurons with response properties
matched to those in primate retina. However, we compared MI estima-
tors using a second neural population with higher gain (i.e., large ||k||)
and longer refractory periods, and we found a significant gap between the
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Figure 11: Mutual information (MI) estimates for a population of two highly
nonlinear neurons. Responses to gaussian white noise stimuli were simulated
from an ON-OFF pair of neurons with larger-amplitude stimulus filters and
longer refractory periods than neurons used in Figure 10. The MI between
0.25 s stimulus segments and the spike response was estimated using the OLE
residuals, MAP residuals, and the posterior entropy under the Laplace approxi-
mation. At the highest contrast, the Laplace approximation-based estimate (gray
trace) is 35% higher than the lower bound defined by the MAP residuals (black).
Looseness of the lower bound is at least partly explained by trial-to-trial fluc-
tuations in the posterior, since the estimate formed by averaging the Hessian
across all stimulus-response pairs (labeled Laplace; dotted gray trace) is only
16% above the MAP-based lower bound. The Laplace estimate is equivalent to
assuming that the posterior is gaussian with a single fixed covariance (estimated
as the average of the posterior covariances on each trial; see text). This shows
that the inequality (see equation 5.4) is not tight in certain cases.

Laplace approximation-based estimate and the MAP-based lower bound,
indicating that the lower bound may be loose for populations with highly
nonlinear encoding (see Figure 11).

For insight into the gap between the lower bounds and our estimate
(both of which rely on some form of gaussian approximation), observe that
the lower bounds characterize all the residuals as arising from a single
gaussian with fixed covariance. This ignores data-dependent variations
in the width of the posterior along different feature axes (i.e., differing
levels of uncertainty about particular stimulus features, which may arise
due to the particular stimulus drawn from the prior, or stochasticity in
spike response generated on individual trials). Thus, when the response
nonlinearity induces response-dependent fluctuations in the Hessian of
the log posterior (as the GLM does at high contrasts), we can expect the
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OLE and MAP-based lower bounds to significantly underestimate the true
mutual information between stimulus and response. This is the content of
inequality (5.4).

We can quantify the contribution of such fluctuations by forming a third
estimator (denoted ⟨Laplace⟩ in Figure 11), which uses the average Hessian
⟨J ⟩ = 1

N

∑
j J (r j ) to estimate H[x | r] instead of averaging log |J (r j )| across

responses (see equation 5.2). For this estimator,

Ĥ[x | r] = −1
2

log |⟨J ⟩| + d
2

log(2πe). (5.6)

By transposing the average over J (r j ) and the negative log determinant, this
estimate forms an upper bound on the Laplace-based conditional entropy
estimate (see equation 5.2), by Jensen’s inequality, and thus a lower bound
on the Laplace-based MI estimate. As shown in Figure 11, this estimator
accounts for much of the gap between the MAP-based lower bound (see
equation 5.5) and the Laplace-based estimate, showing that trial-to-trial
fluctuations in the posterior can cause the MAP-based lower bound to
underestimate the MI at high contrasts.

6 Discrimination and Detection: Change-Point Analysis

We have been discussing estimation of continuous-valued parameters.
However, it is important to note that similar methods are quite useful for
two-point discrimination (detection) problems as well. Consider the fol-
lowing two-alternative forced choice (2AFC) paradigm. We observe a spike
train, or population spike train, r, and are asked to discriminate between
two possible known stimuli, x0 and x1, which might have produced the ob-
served responses. In the statistics literature, this 2AFC paradigm is known
as testing between two simple hypotheses, and the optimal discriminator
is known to be based on the posterior ratio p(x0 | r)/p(x1 | r). If this ratio
is greater than some threshold value, we say that x0 was the stimulus, and
otherwise we say it was x1 (Schervish, 1995). (See, e.g., Pillow et al., 2005, for
a recent application to retinal data, or de Ruyter van Steveninck & Bialek,
1995, or Rieke et al., 1997, for a good list of applications of this idea in the
classical psychophysics and neuroethology literature.)

Now let us consider a slightly more general and realistic case, in which
neither x0 nor x1 is known exactly. We have two hypotheses, H0 and H1,
and stimuli are drawn according to two distinct distributions p(x | H0) and
p(x | H1). Our goal is to decide which of the two distributions the stimulus
was drawn from, given not the stimulus but just spiking data r. (We discuss
more concrete examples below, but for now, it may be helpful to keep the
following simple example in mind: x is a white gaussian noise stimulus,
with one mean and variance under H0 and a different mean and variance
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under H1; our goal is to decide between these two hypotheses. Of course,
more complex distributions p(x | H0) and p(x | H1) are feasible.)

In this case, the optimal decision rule still has the form of a posterior-ratio
test,

p(H0 | r)
p(H1 | r)

= p(r | H0)p(H0)
p(r | H1)p(H1)

=
p(H0)

∫
p(r | x)p(x | H0)dx

p(H1)
∫

p(r | x)p(x | H1)dx
. (6.1)

Thus, we need to marginalize out the stimulus x, which is not observed di-
rectly, to calculate p(r | H). (This ratio of marginal probabilities is called the
Bayes factor in the Bayesian hypothesis testing literature; Kass & Raftery,
1995.) The key point is that we can directly adapt the gaussian approxima-
tion described above to compute these integrals.

As before (see equation 3.7) we approximate the posterior by a gaussian,

G1(x) = 1
z1

p(r | x)p(x | H1)
(6.2)

G2(x) = 1
z2

p(r | x)p(x | H2),

where Gi (x) is the gaussian with mean xmapi and covariance Ci = J −1
i (both

computed using the prior p(x | Hi )), and zi is an unknown normalization
constant for each posterior (known in the Bayesian statistical literature as
the “evidence” or “marginal likelihood”; Kass & Raftery, 1995). Now clearly,

∫
p(r | x)p(x | Hi ) dx =

∫
zi Gi (x) dx = zi , (6.3)

so to compute our posterior ratio (see equation 6.1), we just need to compute
z1 and z2.

From the encoding model, we know the value p(r | xmapi ), and from our
prior on x, we know p(xmapi | Hi ) . We also know from the formula for a
gaussian density that

Gi (xmapi ) =
[
(2π)d/2|Ci |1/2]−1 = |J i |1/2/(2π)d/2.

So by inserting these terms into (see equation 6.2) and solving for zi , we
obtain

zi =
p(r | xmapi )p(xmapi | Hi )

G(xmapi )

= p(r | xmapi )p(xmapi | Hi )(2π)d/2|Ci |1/2,
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and the Bayes factor reduces to

p(H0 | r)
p(H1 | r)

= p(H0)z0

p(H1)z1
=

p(H0)p(r | xmap0)p(xmap0 | H0)|C0|1/2

p(H1)p(r | xmap1)p(xmap1 | H1)|C1|1/2 . (6.4)

Thus, once again, the computation of these marginal posterior quantities
reduces to a simple determinant computation once we have obtained xmap
and J under each hypothesis, assuming the gaussian approximation is ac-
curate. The computation of the determinants |C0| and |C1| can be performed
in O(T) time in many important cases (see Paninski et al., in press, for de-
tails). If this gaussian approximation is inaccurate, more expensive Monte
Carlo approaches are required (see the companion article by Ahmadian
et al., 2011, for further details).

6.1 Optimal Change-Point Detection. A more subtle and perhaps more
behaviorally relevant situation arises when we are asked to detect the time
at which the stimulus undergoes a change between class H0 to class H1 (e.g.,
the time at which the mean or the variance of the stimulus is changed sud-
denly (DeWeese & Zador, 1998). We may compute the posterior probability
of “no change” exactly as before, using our gaussian approximation-based
estimate of p(r | H0). Now the likelihood that a change occurred at time t is

p(r | H[change at t]) =
∫

p(r | x)p(x | H[change at t]) dx.

Thus, finding the time at which the change occurs simply requires that we
compute

p(r | H[change at t]) =
∫

p(r | x)p(x | H[change at t]) dx

≈ p(r | xmap)p(xmap | H[change at t])(2π)d/2|Ct|1/2, (6.5)

where, again, the MAP estimate and approximate covariance Ct for each
time t are computed under the prior distribution p(x | H[change at t]).

Choosing the peak of this function gives us the maximum-likelihood
estimator for the change-point time. The posterior probability that a change
occurred at all is given by averaging

p(change at any time) =
∫

p(r | H[change at t])p(t)dt,

with p(t) the experimentally controlled prior distribution on change-point
times (which might, e.g., be chosen to be uniform on some interval t ∈ (a , b)).
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Figure 12: Illustration of change-point detection for changes in mean (left;
change from µ = −3 to µ = 3, with fixed SD σ = 3) and variance (right; change
from σ = 2 to σ = 6). (Top) Spike times emitted by a simulated pair of (ON and
OFF) retinal ganglion cells in response to a 0.6 s stimulus whose mean/variance
undergoes a change at time t = 0.3 s. The organism’s task is to determine, from
these spike times, if and when a change occurred, and if so how large it was.
(Row 2) Log-likelihood ratio of the hypothesis “change in mean at time t” (see
equation 6.5) to that of “no change,” plotted as a function of t, assuming that
we know the expected change size. (Row 3) A two-dimensional posterior distri-
bution over time and change size if we do not assume we know the latter. The
black line shows the posterior probability of change for the true step size (iden-
tical to black trace on second row). Note that the change time and step size are
inferred fairly accurately, though the variance change would be overestimated.
(Row 4) True stimulus (thin black) and MAP estimate using the correct change
time and height (thick black) or assuming no change (gray).

Figure 12 shows an example of the change-point detection task, illustrating
detection of a change in mean (left) and a change in variance (right).

7 Discussion

We have described three techniques for model-based decoding of neural
spike trains: (1) efficient computational methods for computing the MAP
estimate, based on the GLM encoding model; (2) a tractable method for esti-
mating the mutual information between the stimulus and the response; and
(3) methods for change-point detection based on marginal likelihood. These
three ideas are connected by a simple gaussian approximation of the (log-
concave) posterior p(x | r): the MAP decoder corresponds to the peak loca-
tion of this gaussian; our estimate of the mutual information corresponds
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to the width of this gaussian relative to the width (i.e., entropy) of the prior
distribution; finally, the marginal likelihood corresponds to the height of
the (unnormalized) gaussian approximation to p(x, r), relative to the height
of the normalized gaussian p(x | r). We discuss connections between these
ideas and previous contributions to the neural decoding literature.

7.1 Decoding and the Gaussian Approximation. MAP techniques for
neural decoding have been previously applied in several contexts. The
work closest to ours is the extended abstract by Stanley and Boloori (2001)
(see also Jacobs, Grzywacz, & Nirenberg, 2006), where MAP decoding was
proposed as a relatively tractable alternative to the full posterior mean so-
lution E[x | r] (which requires a high-dimensional integration) for decoding
the binned firing rate generated by a single cascade-type model cell with
truncated gaussian outputs and no spike history effects. These authors
emphasized the superiority of the MAP estimate (which incorporates an
explicit model of how the responses are generated) versus the OLE (which
does not incorporate such an explicit encoding model) in this case, but did
not discuss methods for quantifying the uncertainty in the estimates or in-
corporating spike history effects or simultaneous observations from more
than one neuron. In addition, the log likelihood of the model introduced in
Stanley and Boloori (2001) does not appear to share the concavity properties
enjoyed by the point process GLM. These concavity properties clearly play
a central role in our development.

Lazar and Pnevmatikakis (2008) summarize another closely related
thread of work. They address the problem of decoding a stimulus from the
spike trains of a population of noiseless integrate-and-fire (IF) neurons that
are driven by a linearly filtered version of the stimulus. The key idea is that
each spike provides a single linear constraint on the stimulus; by combining
enough of these linear constraints, the stimulus can be uniquely recovered.
(When the number of spikes is less than the dimensionality of the stimulus
or if noise is present, a pseudoinverse solution may be employed; a similar
approach was discussed in the context of parameter estimation in Pillow
& Simoncelli, 2003.) It is worth noting that this intersection-of-constraints
approach is not equivalent to the MAP approach we have discussed here,
because the former uses only information about the spike times (when the
model neuron voltage is exactly equal to the spiking threshold, leading to a
linear equality constraint), while useful information about the nonspiking
times (when the voltage is below the threshold) is discarded. The latter
information comprises a set of inequality constraints that may be easily in-
cluded in the MAP approach (Koyama & Paninski, in press; Paninski et al.,
in press); discarding these inequality constraints can lead to suboptimal
decoding performance. Gerwinn, Macke, and Bethge (2009) discuss these
issues in more depth in the context of a noisy IF model. (As emphasized
in footnote 3, all of the methods introduced in this article can be applied
directly to the IF model discussed in Paninski, Pillow, et al., 2004 and Pillow
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et al., 2005, since this IF model shares the log-concavity properties of the
generalized linear model we have focused on here. See also Paninski, 2004,
and Paninski, Pillow, & Lewi, 2007, for further discussion of the close con-
nections between the point-process GLM and this type of linearly filtered
integrate-and-fire model.)

A seminal paper in the MAP decoding literature is de Ruyter van
Steveninck and Bialek (1988). Their idea was to directly sample the con-
ditional distributions p(x | r) for certain simple examples of the observed
spiking data r (e.g., they collected samples from the empirical distribution of
x given a single spike, or a spike doublet separated by an interspike interval
of length τ , or a spike triplet indexed by two ISIs τ1 and τ2). Then a gaussian
model was fit to these spike-, doublet-, and triplet-triggered ensembles; this
is exactly comparable to our gaussian approximation of the posterior distri-
butions here, except that our approximation is based on matching the first
and second derivatives of the model-based p(x | r) at the MAP solution and
the approximation in de Ruyter van Steveninck and Bialek (1988) is based
on matching first and second moments to the empirical distribution. These
authors also proposed a heuristic method for combining the information in
separate triplets to obtain a kind of pseudo-MAP estimate of x given the
full spike train (this combination rule is based on an independence assump-
tion that the authors emphasize is unjustified in general). The model-based
MAP estimate and gaussian approximation proposed here may therefore
be considered a more principled way to knit together information from
multiple spike events (and multiple spike trains), even in the presence of
significant dependencies between spikes (i.e., spike history effects). Finally,
it is worth noting that in the GLM, short sequences of spikes are informative
only about projections of the stimulus onto spaces of low dimensionality,
as de Ruyter van Steveninck and Bialek (1988) observed in their data.

Another important and influential series of papers, by Brown and col-
leagues (Brown et al., 1998; Barbieri et al., 2004; Truccolo et al., 2005;
Srinivasan et al., 2006), made use of a generalization of the Kalman fil-
ter proposed by Fahrmeir (1992) to perform approximately optimal de-
coding efficiently in cases where the joint distribution of the stimulus and
response (x, r) may be written in the form of a state-space model with a low-
dimensional state space. These techniques provide an approximate MAP
estimate of the full high-dimensional signal x (instead of the exact opti-
mization over x described here). However, the update step in the recursive
filter does depend on a simpler (low-dimensional) exact maximization over
the value of x at each individual time t, followed by a low-dimensional
Hessian-based gaussian approximation that is exactly analogous to the
high-dimensional gaussian approximation for p(x | r) discussed here (see
Fahrmeir, 1992, and Brown et al., 1998, for full details). One important
advantage of the direct optimization approach described here is that we
may obtain the exact MAP estimate (instead of an approximation), in many
cases with the same O(T) computational complexity, even in cases where the
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stimulus x(t) cannot be easily described in terms of a state-space model. This
is particularly important in the high-dimensional vision decoding problems
discussed here, for example. Constrained problems are also easier to handle
using this direct optimization approach (e.g., as shown in Figure 5). (See
Paninski et al., in press, for further discussion.)

Finally, in section 4 we discussed some important connections between
the OLE and MAP estimates. As we have emphasized, the MAP and OLE
match exactly in the limit of low SNR (see Figure 8), though the MAP is
superior at high SNR, assuming the model is correctly specified. More-
over, both the MAP and OLE show a crossover between convolution- and
deconvolution-like behavior as the SNR increases. Similar points were made
in the context of a simpler version of the GLM (using a similar perturbative
analysis) by Bialek and Zee (1990). (Further discussion appears in Rieke
et al., 1997.)

We close this section by noting a major direction for extending the
applicability of the MAP decoding methods described here. One of the
major strengths of the GLM encoding model (and related models: Panin-
ski, Pillow, & Simoncelli, 2004, 2005; Kulkarni & Paninski, 2007; Pil-
low, 2009) is that we may very easily incorporate nonlinear terms into
the model. That is, instead of restricting our attention to models of the
form λ(t) = f (b + k · x +

∑
j h(t −tj )), we may incorporate nonlinear terms

λ(t) = f (b + k · x +
∑

i ziFi (x) +
∑

j h(t −tj )) and estimate the weights zi
by concave maximum likelihood, just like the other model parameters
(b, k, h(·)); this greatly increases the flexibility and power of this model.
(As emphasized in Chichilnisky, 2001, and Paninski, 2004, this generalized
model simply corresponds to a relabeling of our stimulus x; incorporating
nonlinear terms of this nature is a standard technique in multiple regression
analysis: Duda & Hart, 1972; Sahani, 2000.) However, while this nonlinear
model retains its concavity in the model parameters, unfortunately it loses
the key concavity in x, and the likelihood of x is therefore prone to non-
global local maxima.7 Handling this issue constitutes an important avenue
for future research.

7.2 Information Estimation. Perhaps our most striking result is that
the linear reconstruction lower bound on mutual information may be sig-
nificantly loose depending on the stimulus strength and the properties of
the encoding model. This lower-bound technique has been employed quite
frequently since its introduction by Bialek et al. (1991) (see Rieke et al.,

7To be clear, models including these nonlinearities do not necessarily have local max-
ima. Our log-concavity conditions are in a sense overengineered to guarantee that no local
maxima exist: these conditions are sufficient, not necessary. The point is that we can no
longer guarantee that we have found the global maximum in these nonlinear models; in
this case, simulated annealing or Metropolis-Hastings methods are typically required to
explore the stimulus space more thoroughly, as we discuss in section 7.3.
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1997, for a partial list of applications), and therefore the improved estimate
introduced here may have a significant impact on our understanding of
the fidelity of the neural code in a variety of experimental preparations.
Previous authors have emphasized the looseness of this lower bound in
applications to several model preparations. Examples are the cat retina,
(Passaglia & Troy, 2004) and the electrosensory system of the weakly elec-
tric fish (Chacron, 2005).

As with the MAP decoding idea, a number of variants of our infor-
mation estimate have appeared previously in the literature. In particular,
de Ruyter van Steveninck and Bialek (1988) computed the entropy of the
spike-triggered gaussian approximation discussed above in order to quan-
tify the informativeness of single spikes versus spike doublet and triplet
events. Again, our model-based techniques may be considered a general-
ization in that they allow us to compute the conditional entropy given a
population spike train containing an arbitrarily large number of spikes.
In addition, Barbieri et al. (2004) used their recursive approximate point-
process filter to compute dynamic estimates of the conditional entropy of
x(t) given the available spiking data up to time t. Finally, the idea that we
might use model-based approaches for computing the information I [x; r],
a problem that is otherwise quite difficult when considered nonparamet-
rically (Paninski, 2003), has appeared in earlier work (Harris, Csicsvari,
Hirase, Dragoi, & Buzsaki, 2003; Butts & Stanley, 2003; Sharpee, Rust, &
Bialek, 2004; Paninski, Fellows, et al., 2004; Pillow & Simoncelli, 2006).

7.3 Extensions: Fully Bayesian Techniques. The most important exten-
sion of these methods is to adapt these techniques to employ more general
fully Bayesian methods, in which we compute these integrals exactly by
Monte Carlo techniques (Robert & Casella, 2005) instead of the computa-
tionally cheaper gaussian approximation used here. This extension is impor-
tant for three reasons. First, it is necessary to verify our MAP-based results
(especially concerning the slackness of the reconstruction lower bound on
the mutual information) using the exact posterior densities instead of the
gaussian approximation. Second, the MAP estimator can have a large aver-
age error in cases in which the stimulus prior is too flat, and the likelihood
term p(r | x) poorly constrains our estimate of x (e.g., uniformly distributed
x; see Figure 6); in this case, we expect the posterior mean estimate E[x | r]
to be superior. Finally, fully Bayesian methods allow us to consider a wider
variety of convex cost functions than does the MAP framework; this flex-
ibility in the choice of cost function may be important for some decoding
applications.

A large variety of computational methods have been developed and
intensively studied for computing the necessary integrals. In cases where
the tree decomposition holds (e.g., the state-space models discussed above),
sequential importance sampling methods (particle filtering) can be quite
effective (Doucet, de Freitas, & Gordon, 2001; Brockwell et al., 2004, 2007;
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Kelly & Lee, 2004; Shoham et al., 2005; Ergun et al., 2007). More generally,
methods based on the Metropolis-Hastings algorithm (Robert & Casella,
2005) may be applied (Rigat, de Gunst, & van Pelt, 2006; Cronin, Stevenson,
Sur, & Kording, 2009). We discuss these fully Bayesian methods in much
more depth in the companion paper in this issue.

Appendix A: Comparing the MAP Estimator and OLE
in the Low-SNR Regime

As noted in section 4, the behavior of the MAP estimator xmap in the low
signal-to-noise regime depends on the moments E[r0xT ] and E[r0rT

0 ]. (Recall
that r0 is the mean-subtracted response, r0 = r −E[r].) In the limit of low-
SNR c∥k∥ → 0, these terms can be calculated as follows. Here, as in section 4,
∥k∥ denotes the norm of the filter k, and c denotes the stimulus contrast (i.e.,
standard deviation), so that the magnitude of the stimulus x is proportional
to c. In addition, for simplicity, we assume for now that the spike history
terms hi j (.) are negligible for all (i, j).

Under the GLM encoding model, responses are conditionally Poisson:

r ∼ Poiss[ f ((K x) + b)dt], (A.1)

where f is the response nonlinearity; assume the stimulus has a gaussian
prior, x ∼ N (0, C). A second-order expansion in x around b gives

E[r | x] = dt
(

f (b) + f ′(b).K x + 1
2

f ′′(b).K x.K x
)

+ o(c2∥k∥2), (A.2)

with ‘.’ again denoting pointwise multiplication of vectors. Averaging this
over x, we obtain

E[r] = dt
(

f (b) + 1
2

f ′′(b)diag[KCK T ]
)

+ o(c2∥k∥2). (A.3)

Given that x has zero mean, we have E[r0xT ] = E[rxT ], and since it has
covariance C, it follows that

E[r0xT ] = E[rxT ] = E[E[r | x]xT ] = dt(diag[ f ′(b)]K C) + o(c2∥k∥2).

(A.4)

Now, to derive E[r0rT
0 ], note that

E[r0rT
0 ] = E[E[r0rT

0 | x]] = E
[
Cov[r0 | x] + E[r0 | x]E[rT

0 | x]
]
. (A.5)
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It follows from the Poisson assumption (see equation A.1) that

Cov[r0 | x] = Cov[r | x] = diag [E[r | x]] , (A.6)

and from equations A.2 and A.3 that

E[r0 | x]E[rT
0 | x] = dt2( f ′(b).K x)( f ′(b).K x)T + o(c2∥k∥2), (A.7)

so after averaging over x, we obtain

E[r0rT
0 ] = dt

(
diag[ f (b)] + 1

2
diag

[
f ′′(b).diag(KCK T )

]

+ dt diag[ f ′(b)]KCK T diag[ f ′(b)]
)

+ o(c2∥k∥2). (A.8)

Putting these pieces together to form the optimal linear estimator (see
equation 4.2) gives

xole = CK T diag[ f ′(b)./ f (b)] (r −dt( f (b))) + o(c2∥k∥2), (A.9)

as discussed in section 4. Thus we see that the OLE in the case of Poisson
observations behaves much as in the case of gaussian observations (see
equation 4.1): in the low-SNR regime, the OLE behaves like a convolution
(with f ′(b)./ f (b) here playing the role of 1/σ 2 in the gaussian case), while
as the SNR increases, the optimal linear filters take on the pseudoinverse
form, with terms involving (KCK T )−1 multiplied by (CK T ).

Turning to the MAP case, we examine the log posterior in a similar limit:

log p(x | r) = g(b + K x)T r −dt f (b + K x)T 1 −1
2

xTC−1x, (A.10)

where g(·) abbreviates log f (·) and 1 is a vector of all ones. Taking a second-
order expansion in x gives

log p(x | r) =
(

g(b) + g′(b).K x + 1
2

g′′(b).K x.K x
)T

r −1
2

xTC−1x

−dt
(

f (b) + f ′(b).K x + 1
2

f ′′(b).K x.K x
)T

1 + o(c2∥k∥2),

(A.11)

This expression is quadratic in x; if we note that ( f ′′(b).K x.K x)T 1
and (g′′(b).K x.K x)T r may be written in the more standard form
xT K T diag[ f ′′(b)]K x and xT K T diag[g′′(b).r]K x, respectively, then we may
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easily optimize to obtain

xmap =
(
C−1 −K T diag

[
r.g′′(b) −dt f ′′(b)

]
K

)−1
K T (g′(b).r − f ′(b) dt)

+ o(c2∥k∥2)

= CK T diag[ f ′(b)./ f (b)](r −dt f (b)) + o(c∥k∥). (A.12)

In the case that the nonlinearity f is exponential, the MAP takes a form
that makes it easy to gain intuition about the effects of spike history (and
coupling) terms. Specifically, if the conditional intensity of the ith neuron
is f ((K x)i + bi + (Br)i ), where B is a linear operator capturing the causal
dependence of the response on spike train history, then we obtain

log p(x | r)= (b + K x + Br)T r −dt exp(b + K x + Br)T 1 −1
2

xTC−1x;

(A.13)

Optimizing to second order, as above, gives

xmap =
(
C−1 + dtK T diag[exp(b + Br)]K

)−1
K T (

r −dt exp(b + Br)
)

+ o(c2∥k∥2), (A.14)

which, neglecting terms of second or higher order in c∥k∥, reduces to equa-
tion 4.4 in the main text.

Appendix B: GLM Parameters and Simulation Details

Here we describe the parameters used for simulations and decoding anal-
yses. For most analyses, the parameters of the GLM were extracted from
those fit to a single ON and a single OFF retinal ganglion cell from the
population described in Pillow et al. (2008), shown here in Figure 13A. We
used an exponential nonlinearity to describe the mapping from linearly fil-
tered input to conditional intensity, which provided a good description of
retinal firing: λ(t) = exp(k · x(t) +

∑
α h(t −tα) + b). Each cell’s parameters

therefore consisted of a stimulus filter k a spike history filter h, and a con-
stant b. The stimulus filter k was a purely temporal 40-tap filter, extracted
as the first singular vector of the neuron’s full space-time receptive field
estimated in Pillow et al. (2008). The spike history filter h (see Figure 13A,
right panel) was parameterized as a linear combination of 10 basis vectors
(“cosine bumps”) of the form

b j (t) =

⎧
⎨

⎩

1
2

cos
(

γ log
[ t + ψ

φ j + ψ

])
+ 1

2
, if γ log

[ t + ψ

φ j + ψ

]
∈ [−π,π]

0, otherwise,

(B.1)
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Figure 13: GLM parameters used for simulating spike trains and MAP-based
decoding and applications. (A) Parameters fit to one ON and one OFF reti-
nal ganglion cell (for methods, see Pillow et al., 2008). Filter parameters (left)
describe the integration of light as a function of time before a spike. Exponen-
tiated postspike filters (right) show the multiplicative effect of a spike at time
zero on the subsequent probability of spiking in either cell. (B) Parameters used
for analyses shown in Figures 9 and 11. Larger-amplitude filters and longer
relative refractory period make responses more nonlinear.

where φ j is the peak of the j th basis vector and γ , ψ are scalars control-
ling the logarithmic stretching of time. We set the peaks of first and last
basis vectors to φ1 = 1 ms and φ10 = 50 ms, with ψ = 0.167 and γ = 3.76
so that the peaks were evenly spaced in logarithmic time according to
γ log( φ j+1+ψ

φ j +ψ
) = π

2 . This basis allows for fine temporal structure on short
timescales and coarse temporal structure on longer timescales, and pre-
cludes temporal aliasing (see Pillow et al., 2005, 2008). The constant b was
3.1 for the OFF cell and 2.25 for the ON cell, corresponding to baseline spike
rates of 20 Hz and 9.5 Hz, respectively.

For analyses involving populations of simulated neurons (see Figures 2,
3, 4, 7, 8 10, and 12), identical copies of these two neurons were created. For
the spatial-decoding analysis shown in Figure 7, the neurons were equipped
with canonical difference-of-gaussian spatial receptive fields (with standard
deviations of center and surround given by σctr = 0.75 pixels and σsur = 1.5
pixels, respectively, with weighting 1 and −.25 for center and surround). For
the larger image example (see Figure 7B), these spatial receptive fields were
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scaled up by a factor of 4 in order to achieve identical tiling of the image
plane. For Figures 9 and 11, a slightly different set of parameters was used,
with symmetric, larger-amplitude stimulus filters and identical postspike
filters that induced strong refractory effects (shown in Figure 13B).

For all examples, spike trains from the GLM were sampled using the
time-rescaling transform (Brown, Barbieri, Ventura, Kass, & Frank, 2002),
with time discretized in bins of size 0.08 ms. MAP decoding was carried
out assuming knowledge the true GLM parameters. (The results do not
differ if these parameters are instead estimated from a sufficiently large
set of simulated responses). The optimal linear filter (OLE; see equation
4.2) was estimated by using simulated GLM responses to a 300,000-sample
(42-minute) stimulus to estimate the terms E[rrT ] and E[rT x]. The OLE filter
was estimated separately for each contrast level and number of neurons.

Except where otherwise noted, the stimulus prior p(x) used for MAP
decoding was standard (independent, zero-mean, unit-variance) gaussian.
For the one-dimensional example showing performance under a natural-
istic (1/F) prior (see Figure 4), the prior was taken to be gaussian with
unit marginal variance and a covariance that was diagonal in the Fourier
domain, with standard deviation proportional to 1 over frequency (leading
to a highly correlated prior in the time domain). For the spatial decoding
of natural images (see Figure 7), the prior was diagonal in the 2D Fourier
domain, with marginal variance set to the true variance of the pixel intensi-
ties (which affects only the total scaling of the MAP estimate) and standard
deviation falling as 1/F 2.
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