M394C - Problem Set 1

due date 02/07/2019

1 Spatial modeling

1.1 Derivation of the cable equation

An axon is modeled as a long cylindrical piece of membrane encapsulating an interior medium. We assume that the membrane voltage across the membrane is only a function of the position along the cylinder x, which represents the distance from the soma of a cell. The cable can be viewed as a succession of iso-potential infinitesimal membrane sections of length $d x$. There are only three types of ionic currents: the extracellular and intracellular axial currents $I_{e}(x)$ and $I_{i}(x)$, and the transmembrane ionic current $I_{t}(x)$. The transmembrane ionic current $I_{t}(x)$ is the sum of capacitive currents, ionic currents, and possibly applied currents

$$
\begin{equation*}
I_{t}=p\left(C_{m} \frac{\partial V}{\partial t}+I_{\mathrm{ion}}+I_{\mathrm{applied}}\right) \tag{1}
\end{equation*}
$$

where p is the cable perimeter and where $C_{m}, I_{\text {ion }}$ and $I_{\text {applied }}$ are the capacitance, the ionic current, and the applied current per unit of surface. Moreover, we assume that both axial currents are Ohmic, i.e. denoting by V_{e} and V_{i} the extracellular and intracellular potentials respectively, we have

$$
\begin{align*}
V_{i}(x+d x)-V_{i}(x) & =-I_{i}(x) r_{i} d x, \tag{2}\\
V_{e}(x+d x)-V_{e}(x) & =-I_{e}(x) r_{e} d x, \tag{3}
\end{align*}
$$

where r_{i} and r_{e} are the resistance per unit of length of the intracellular and extracellular media, respectively.

1) Using the fact the total axial current $I_{e}+I_{i}$ is constant, deduce from Kirchoff's law (i.e., from the conservation of currents) that in the limit $d x \rightarrow 0$, one obtains the cable equation under the form

$$
\begin{equation*}
I_{t}=p\left(C_{m} \frac{\partial V}{\partial t}+I_{\text {ion }}+I_{\text {applied }}\right)=\frac{\partial}{\partial x}\left(\frac{1}{r_{i}+r_{e}} \frac{\partial V}{\partial x}\right) . \tag{4}
\end{equation*}
$$

where $V=V_{i}-V_{e}$.
Hint: write the transverse current as the derivative the axial current I_{e}, use the definition of V to express its derivative in terms of I_{e} and $I_{e}+I_{i}$, and combine both results to obtain the desired expression.
2) The intracellular resistivity satisfies $r_{i}=R_{c} / A$, where R_{c} is the cytoplasmic resistivity and where A is the cross-sectional area of the cable. Introducing the membrane resistivity

$$
\begin{equation*}
\frac{1}{R_{m}}=\left.\frac{\partial I_{\mathrm{ion}}}{\partial V}\right|_{V=V_{0}} \tag{5}
\end{equation*}
$$

we define the membrane time constant $\tau_{m}=R_{m} C_{m}$. Neglecting the extracellular resistivity r_{e}, show that the cable equation takes the dimensionless form

$$
\begin{equation*}
\frac{\partial V}{\partial T}=\frac{\partial^{2} V}{\partial X^{2}}+f(V, T), \quad \text { with } \quad X=x / \lambda_{m} \quad \text { and } \quad T=t / \tau_{m} \tag{6}
\end{equation*}
$$

and specify the space constant λ_{m} in terms of R_{m} and R_{c}.

1.2 Linear cable equation

Passive electrical conduction in dendrites only involves Ohmic transmembrane currents for which the approximation $f(V, T)=-V$ is valid. This yields the linear cable equation.
3) Find the fundamental solution of the linear cable equation satisfying

$$
\begin{equation*}
-\frac{\partial^{2} f}{\partial X^{2}}+f=\delta_{a} \quad \text { with } \quad \lim _{x \rightarrow \pm \infty} f(x)=0 \tag{7}
\end{equation*}
$$

where the Dirac delta function δ_{a} represents an inward positive current in a. Deduce the solution for an inhomogeneous current input I, seen as an absolutely integrable function of x. Answer the same questions for a finite cylinder with $0<x<L$ and for sealedend boundary conditions, i.e., $\partial V / \partial X=0$, and for short-circuit boundary conditions, i.e., $V=0$.
4) Consider a branched structure with a cylinder of length L with diameter d branching into two cylinders of lengths L_{1} and L_{2} and diameters d_{1} and d_{2}, respectively. Find the steady-state solution of the cable equations assuming that i) each component of the branched structure has identical electrical properties, that $i i$) the terminal boundary conditions are given by

$$
\begin{equation*}
\left.\frac{\partial V}{\partial X}\right|_{0}=-r_{i} \lambda_{m} I_{0}, \quad V_{1}\left(L_{1}\right)=V_{2}\left(L_{2}\right)=0 \tag{8}
\end{equation*}
$$

and that $i i i$) voltages are continuous and currents are conserved at the branching.
5) Assuming that $L_{1}=L_{2}$, find a condition on the diameters d, d_{1}, and d_{2} such that the solution for the branched structure is equivalent to the solution obtained for a single cylinder. Justify that a branched structure is equivalent to a single cylinder if the following properties are satisfied:
$i)$ If d is the diameter of a parent branch, the diameters d_{1}, \ldots, d_{n} of the offspring branches satisfy

$$
\begin{equation*}
d_{0}^{3 / 2}=d_{1}^{3 / 2}+\ldots+d_{n}^{3 / 2} \tag{9}
\end{equation*}
$$

ii) All the boundary conditions at the terminal ends are the same.
iii) Each terminal end is the same dimensionless distance L (in units of λ_{m}) from the origin of the tree.

Hint: Being equivalent to a single cylinder requires that piecewise solutions are smoothly connected at junctions, imposing conditions on the coefficients, which themselves depend on the diameter via the length scale λ_{m}.

1.3 Rall model

The Rall model consists of a dendritic tree modeled as an equivalent cylinder and of an iso-potential soma that acts as a resistance R_{s} and a capacitance C_{s} in parallel. Thus, the dendritic potential V satisfies the same cable equation but with a new boundary condition in 0 , at the junction between the soma and the cable. If I_{0} denote the applied current to the soma, then the boundary condition in 0 reads

$$
\begin{equation*}
I_{0}=-\frac{1}{r_{i}} \frac{\partial V(0, t)}{\partial x}+C_{s} \frac{\partial V(0, t)}{\partial t}+\frac{V(0, t)}{R_{s}}, \tag{10}
\end{equation*}
$$

so that

$$
\begin{equation*}
R_{s} I_{0}=-\gamma \frac{\partial V(0, T)}{\partial X}+\sigma \frac{\partial V(0, T)}{\partial t}+V(0, T), \tag{11}
\end{equation*}
$$

with $\sigma=C_{s} R_{s} / \tau_{m}$ and $\gamma=R_{s} /\left(r_{i} \lambda_{m}\right)$. For simplicity, we take $\sigma=1$. We want to find an expression for the time-dependent response of the Rall model in response to an impulse current $I_{0}(T)=\delta(T)$ localized at the soma, with sealed terminal boundary conditions $\partial V(L, T) / \partial X=0$, and with initial condition $V\left(X, 0^{-}\right)=0$.

1) Forgetting about the initial condition, use the method of the separation of the variable for solutions under the form $V(X, T)=\phi(X) e^{-\mu^{2} T}$.
2) Justify that the sought-after solutions, with initial condition, can be written as

$$
\begin{equation*}
V(X, T)=\sum_{n=0}^{\infty} A_{n}\left(\cos \left(\lambda_{n} X\right)-\frac{\lambda_{n}}{\gamma} \sin \left(\lambda_{n} X\right)\right), \tag{12}
\end{equation*}
$$

where A_{n} are some real coefficients.
3) Subsidiary question: Can you specify the unknown coefficients A_{n} ?

2 Traveling wave

It can be shown that the Hodgkin-Huxley cable equation admits traveling wave solutions, modeling spike propagation along the axon. A simpler parabolic partial differential equation that admits traveling wave solutions is the Fisher equation

$$
\begin{equation*}
\frac{\partial v}{\partial t}=\frac{\partial^{2} v}{\partial x^{2}}+f(v), \tag{13}
\end{equation*}
$$

where the nonlinear function f is given by $f(v)=v(1-v)$. In the context of the Fisher equation, traveling waves are defined as nonconstant solutions of the form $(x, t) \mapsto$ $v(x, t)=g(x-c t)$ for some real number c and such that $\lim _{x \rightarrow \pm \infty} g(x)$ is finite. The Fisher equation prominently features in population dynamics where it models the propagation of a trait in a population.

1) Discuss spatially homogeneous solutions to the Fisher equation.
2) Justify that if $(x, t) \mapsto v(x, t)=g(x-c t)$ is a traveling wave solution of the Fisher equation then f solves the two-dimensional dynamical system

$$
\begin{equation*}
\frac{\partial v}{\partial x}=u, \quad \frac{\partial u}{\partial x}=-c u-v(1-v) \tag{14}
\end{equation*}
$$

3) Perform the phase portrait analysis of the above two-dimensional system: sketch the vector fields and the nullclines, identify equilibria and discuss their stability.
4) What are possible values for $\lim _{x \rightarrow \pm \infty} g(x)$ if $(x, t) \mapsto v(x, t)=g(x-c t)$ is a traveling wave solution to the Fisher equation? Explain that the existence of traveling wave solutions is equivalent to the existence of particular types of trajectories solving the two-dimensional dynamical system (14).
5) Assuming that $c \geq 2$, show that the two-dimensional dynamical system (14) admits heteroclinic orbits. It will be useful to consider the behavior of the trajectories in regions delimited by the curves $u=-v$ and $u=-v(1-v) / c$. Show that traveling wave solutions to the Fisher equation exists for $c>2$ and that they are positive. What happens if $c<2$?
