
M394C - Problem Set 1

due date 02/07/2019

1 Spatial modeling

1.1 Derivation of the cable equation

An axon is modeled as a long cylindrical piece of membrane encapsulating an interior
medium. We assume that the membrane voltage across the membrane is only a function
of the position along the cylinder x, which represents the distance from the soma of a
cell. The cable can be viewed as a succession of iso-potential infinitesimal membrane
sections of length dx. There are only three types of ionic currents: the extracellular and
intracellular axial currents Ie(x) and Ii(x), and the transmembrane ionic current It(x). The
transmembrane ionic current It(x) is the sum of capacitive currents, ionic currents, and
possibly applied currents

It = p

(
Cm

∂V

∂t
+ Iion + Iapplied

)
, (1)

where p is the cable perimeter and where Cm, Iion and Iapplied are the capacitance, the ionic
current, and the applied current per unit of surface. Moreover, we assume that both axial
currents are Ohmic, i.e. denoting by Ve and Vi the extracellular and intracellular potentials
respectively, we have

Vi(x+ dx)− Vi(x) = −Ii(x)ridx , (2)

Ve(x+ dx)− Ve(x) = −Ie(x)redx , (3)

where ri and re are the resistance per unit of length of the intracellular and extracellular
media, respectively.

1) Using the fact the total axial current Ie + Ii is constant, deduce from Kirchoff’s law
(i.e., from the conservation of currents) that in the limit dx → 0, one obtains the cable
equation under the form

It = p

(
Cm

∂V

∂t
+ Iion + Iapplied

)
=

∂

∂x

(
1

ri + re

∂V

∂x

)
. (4)

where V = Vi − Ve.
Hint: write the transverse current as the derivative the axial current Ie, use the definition

of V to express its derivative in terms of Ie and Ie + Ii, and combine both results to obtain
the desired expression.
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2) The intracellular resistivity satisfies ri = Rc/A, where Rc is the cytoplasmic re-
sistivity and where A is the cross-sectional area of the cable. Introducing the membrane
resistivity

1

Rm
=
∂Iion
∂V

∣∣∣
V=V0

, (5)

we define the membrane time constant τm = RmCm. Neglecting the extracellular resistiv-
ity re, show that the cable equation takes the dimensionless form

∂V

∂T
=
∂2V

∂X2
+ f(V, T ) , with X = x/λm and T = t/τm , (6)

and specify the space constant λm in terms of Rm and Rc.

1.2 Linear cable equation

Passive electrical conduction in dendrites only involves Ohmic transmembrane currents for
which the approximation f(V, T ) = −V is valid. This yields the linear cable equation.

3) Find the fundamental solution of the linear cable equation satisfying

− ∂
2f

∂X2
+ f = δa with lim

x→±∞
f(x) = 0 , (7)

where the Dirac delta function δa represents an inward positive current in a. Deduce the
solution for an inhomogeneous current input I , seen as an absolutely integrable function
of x. Answer the same questions for a finite cylinder with 0 < x < L and for sealed-
end boundary conditions, i.e., ∂V/∂X = 0, and for short-circuit boundary conditions, i.e.,
V = 0.

4) Consider a branched structure with a cylinder of length L with diameter d branch-
ing into two cylinders of lengths L1 and L2 and diameters d1 and d2, respectively. Find
the steady-state solution of the cable equations assuming that i) each component of the
branched structure has identical electrical properties, that ii) the terminal boundary condi-
tions are given by

∂V

∂X

∣∣∣∣
0

= −riλmI0 , V1(L1) = V2(L2) = 0 , (8)

and that iii) voltages are continuous and currents are conserved at the branching.
5) Assuming that L1 = L2, find a condition on the diameters d, d1, and d2 such that

the solution for the branched structure is equivalent to the solution obtained for a single
cylinder. Justify that a branched structure is equivalent to a single cylinder if the following
properties are satisfied:

i) If d is the diameter of a parent branch, the diameters d1, . . . , dn of the offspring
branches satisfy

d
3/2
0 = d

3/2
1 + . . .+ d3/2n . (9)
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ii) All the boundary conditions at the terminal ends are the same.
iii) Each terminal end is the same dimensionless distance L (in units of λm) from the

origin of the tree.
Hint: Being equivalent to a single cylinder requires that piecewise solutions are smoothly

connected at junctions, imposing conditions on the coefficients, which themselves depend
on the diameter via the length scale λm.

1.3 Rall model

The Rall model consists of a dendritic tree modeled as an equivalent cylinder and of an
iso-potential soma that acts as a resistance Rs and a capacitance Cs in parallel. Thus, the
dendritic potential V satisfies the same cable equation but with a new boundary condition
in 0, at the junction between the soma and the cable. If I0 denote the applied current to the
soma, then the boundary condition in 0 reads

I0 = −
1

ri

∂V (0, t)

∂x
+ Cs

∂V (0, t)

∂t
+
V (0, t)

Rs
, (10)

so that

RsI0 = −γ
∂V (0, T )

∂X
+ σ

∂V (0, T )

∂t
+ V (0, T ) , (11)

with σ = CsRs/τm and γ = Rs/(riλm). For simplicity, we take σ = 1. We want to find
an expression for the time-dependent response of the Rall model in response to an impulse
current I0(T ) = δ(T ) localized at the soma, with sealed terminal boundary conditions
∂V (L, T )/∂X = 0, and with initial condition V (X, 0−) = 0.

1) Forgetting about the initial condition, use the method of the separation of the variable
for solutions under the form V (X,T ) = φ(X)e−µ

2T .
2) Justify that the sought-after solutions, with initial condition, can be written as

V (X,T ) =

∞∑
n=0

An

(
cos (λnX)− λn

γ
sin (λnX)

)
, (12)

where An are some real coefficients.
3) Subsidiary question: Can you specify the unknown coefficients An?

2 Traveling wave

It can be shown that the Hodgkin-Huxley cable equation admits traveling wave solutions,
modeling spike propagation along the axon. A simpler parabolic partial differential equa-
tion that admits traveling wave solutions is the Fisher equation

∂v

∂t
=
∂2v

∂x2
+ f(v) , (13)
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where the nonlinear function f is given by f(v) = v(1 − v). In the context of the
Fisher equation, traveling waves are defined as nonconstant solutions of the form (x, t) 7→
v(x, t) = g(x−ct) for some real number c and such that limx→±∞ g(x) is finite. The Fisher
equation prominently features in population dynamics where it models the propagation of
a trait in a population.

1) Discuss spatially homogeneous solutions to the Fisher equation.
2) Justify that if (x, t) 7→ v(x, t) = g(x− ct) is a traveling wave solution of the Fisher

equation then f solves the two-dimensional dynamical system

∂v

∂x
= u ,

∂u

∂x
= −cu− v(1− v) . (14)

3) Perform the phase portrait analysis of the above two-dimensional system: sketch the
vector fields and the nullclines, identify equilibria and discuss their stability.

4) What are possible values for limx→±∞ g(x) if (x, t) 7→ v(x, t) = g(x − ct) is
a traveling wave solution to the Fisher equation? Explain that the existence of traveling
wave solutions is equivalent to the existence of particular types of trajectories solving the
two-dimensional dynamical system (14).

3) Assuming that c ≥ 2, show that the two-dimensional dynamical system (14) admits
heteroclinic orbits. It will be useful to consider the behavior of the trajectories in regions
delimited by the curves u = −v and u = −v(1− v)/c. Show that traveling wave solutions
to the Fisher equation exists for c > 2 and that they are positive. What happens if c < 2?
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