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1. Summary. Let M (z) denote the expected value at level z of the response
to a certain experiment. M (z) is assumed to be a monotone function of x but is
unknown to the experimenter, and it is desired to find the solution z = 6 of the
equation M (z) = a, where « is a given constant. We give a method for making
successive experiments at levels 2, , x, , - - - in such a way that z, will tend to 6 in
probability.

2. Introduction. Let M (z) be a given function and « a given constant such
that the equation
(1) M(zx) = a

has a unique root & = 8. There are many methods for determining the value of 6
by successive approximation. With any such method we begin by choosing one or

more values z,, - - - , &, more or less arbitrarily, and then successively obtain new
values 2, as certain functions of the previously obtained #; , - - - , Zn—1, the values
M(zy), -+ -, M(%,-1), and possibly those of the derivatives M'(x,), - - - , M'(z.—1),
ete. If

2) lim z, = 6,

irrespective of the arbitrary initial values z;, ---, 2,, then the method is

effective for the particular function M(x) and value a. The speed of the con-
vergence in (2) and the ease with which the x, can be computed determine the
practical utility of the method.

We consider a stochastic generalization of the above problem in which the
nature of the function M (x) is unknown to the experimenter. Instead, we suppose
that to each value z corresponds a random variable ¥ = Y (z) with distribution
function Pr[Y(z) < y] = H(y | z), such that

(3) M(x)=‘/wde(y]x)

is the expected value of Y for the given 2. Neither the exact nature of H(y | z)
nor that of M () is known to the experimenter, but it is assumed that equation (1)
has a unique root 6, and it is desired to estimate 8 by making successive observa-

tions on Y at levels z; , 3, - - - determined sequentially in accordance with some
definite experimental procedure. If (2) holds in probability irrespective of any
arbitrary initial values z; , - - - , 2, , we shall, in conformity with usual statistical

terminology, call the procedure consistent for the given H(y | ) and value «a.
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In what follows we shall give a particular procedure for estimating 8 which is
consistent under certain restrictions on the nature of H(y | z). These restrictions
are severe, and could no doubt be lightened considerably, but they are often
satisfied in practice, as will be seen in Section 4. No claim is made that the
procedure to be described has any optimum properties (i.e. that it is “efficient’’)
but the results indicate at least that the subject of stochastic approximation is
likely to be useful and is worthy of further study.

3. Convergence theorems. We suppose henceforth that H(y | z) is, for every z,
a distribution function in y, and that there exists a positive constant C such that

4) Pr[lY(x)ISC]=‘[ZdH(y|x)=1 for all .

It follows in particular that for every z the expected value M (z) defined by (3)
exists and is finite. We suppose, moreover, that there exist finite constants a,
6 such- that

(5) M(z) < a for z <8, M(z) > a for =z > 6.

Whether M (8) = « is, for the moment, immaterial.
Let {aa} be a fixed sequence of positive constants such that

(6) 0< D dh=A4< o,
1

We define a (nonstationary) Markov chain {z,} by taking z; to be an arbitrary
constant and defining
@ ' Tng1r =~ Tn = Gu(a — Ya),

where y, is a random variable such that

®) Priy. < y | z.) = H(y | za).
Let

9) ba = E(x. — 0)".

We shall find conditions under which

(10) lim b, = 0

no matter what the initial value z; . As is well known, (10) implies the convergence
in probability of z,. to 6.
From (7) we have

buyr = B(@ays — 0)° = ElE[(znp1 — 0)* | 2]

E[[: {@n — 0) — auly — @)} dH(y | xn)]

]

(11)

b+ @ E [ [ w- otanq ﬂ] — 2a Bl — Mz — ).
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Setting

(12) dn = Bl(@n — 0)(M(za) — )],
(13) w=u| [ G- wangle |,
we can write

(14) bapr — by = ahen — 200 .

Note that from (5)
dn 2 0,
while from (4)
0<ea<[C+]|al< .

Together with (6) this implies that the positive-term series E:af.en converges.
Summing (14) we obtain

(15) brgr = b1 + > ahej — 2 Z a; d;.

=1 =1

Since b,4; > 0 it follows that

(16) ]};)a,- d; S%[b1+iaien:|< ®.
Hence the positive-term series

17) i Gy On

converges. 1t follows from (15) that

(18) lim b, = b + i::aien -2 ia dn = b

exists; b > 0.
Now suppose that there exists a sequence {k.} of nonnegative constants
such that

E4

(19) dn Z kubu, 22 anka = oo.

1

From the first part of (19) and the convergence of (17) it follows that
(20) > Qnkinby < .
1
From (20) and the secoud part of (19) it follows that for any ¢ > 0 there must

¢xist infinitely many values n such that b, < e Since we already know that
b o= Hm o b, exists, it follows that b = 0. Thus we have proved
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LemMa 1. If a sequence {k,} of nonnegalive constants exists satisfying (19)
then b = 0.

Let
(21) Adp=|1— 0|+ [CH+|allla+ a+ - + aw1);
then from (4) and (7) it follows that
(22) Prilz, — 6] < A,] = 1.
Now set
(23) k, = inf [%’%@:‘_@ﬁ] for 0<|x —06]< A4,

From (5) it follows that E, > 0. Moreover, denoting by P.(z) the probability
distribution of z, , we have

d, = [{ ben ( — OWM () — a) dP.(x)
(24) A
> f]z-—ﬂlsAn knlx — 6]7dP.(x) = knba.

It follows that the particular sequence {k.} defined by (23) satisfies the first
part of (19).

In order to establish the second part of (19) we shall make the following
assumptions:

(25) k, = —1—}
, A,
for some constant K > 0 and sufficiently large », and

0

an

@ B+ 4ad”

%,
It follows from (26) that
(27) Dol = %,

1

and hence for sufficiently large n
(29) AC + [a )@ + -+ + aua) > A,
This implies by (25) that for sufficiently large n

7 K on K
29 nkn > a, - . o ,
(29) ankn > an - AC - o i@ + - 4 an)

and the second part of (19) follows from (29) and (26). This proves
Temma 2. If (25) and (26) hold then b = 0.
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The hypotheses (6) and (26) concerning {a.} are satisfied by the sequence
an = 1/n, since

% 2 © 1
SR - [N N
1 N 6 n=2 n <1 + % + . + 1 )

n—1

More generally, any sequence {a.} such that there exist two positive constants
¢’, ¢” for which

’7

[y}

CI
< n
(30) ~ < <

|

will satisfy (6) and (26). We shall call any sequence {a.} which satisfies (6)
and (26), whether or not it is of the form (30), a sequence of type 1/n.

If {a,} is a sequence of type 1/n it is easy to find functions M (z) which satisfy
(5) and (25). Suppose, for example, that M (z) satisfies the following strength-
ened form of (5): for some 6 > 0,

(5" M) <a—6 for z <6, M(z) > a+ 6 for z > 0.
Then for0 < |z — 8| < 4. we have

M(z) — « E)
>
(31) xr — 0 - An’
so that
o
n > )
(32) kn > i

which is (25) with K = é. From Lemma 2 we conclude

TrEOREM 1. If {a.} is of type 1/n, if (4) holds, and if M (x) satisfies (5') then
b=0.

A more interesting case occurs when M (x) satisfies the following conditions:

(33) M(z) is nondecreasing,

(34) M) = o,

(35) M'(6) > 0.

We shall prove that (25) holds in this case also. From (34) it follows that
(36) M) — o = (z — O)IM'(0) + ez — 0)],

where ¢(t) is a function such that

37 lim e(f) = 0.

t—0
Hence there exists a constant 6 > 0 such that

(38) «t) > —~1M'(0) for |t| <o,



STOCHASTIC APPROXIMATION 405

so that

Mz) — «

(39) L

2%M’(0)>0 for |z —0]<a

Hence, for ¢ + 8 < x < 0 4 A4, , since M (z) is nondecreasing,
MG~ MO+ —a 810

r—60 = A, = 24,
while for 8 — 4, <2 <60 — 3,

@1 M(x)—aza—M(x)Zq‘— Mo ——76)26111_'@_
z— 0 0 — zx A, 24,

(40)

Thus, since we may assume without loss of generality that /4, < 1,

M(z) — « > 6M’(0)
x—0 T 24,

so that (25) holds with K = 8M’(6)/2 > 0. This proves

TrEOREM 2. If {a.} ¢s of type 1/n, if (4) holds, and if M (x) satisfies (33), (34),
and (35), then b = 0.

It is fairly obvious that condition (4) could be considerably weakened without
affecting the validity of Theorems 1 and 2. A reasonable substitute for (4)
would be the condition

(42) for 0<|w—10]< 4.,

@) M@I<c [ G- M HGD <A< o forals

We do not know whether Theorems 1 and 2 hold with (4) replaced by (4').
Likewise, the hypotheses (33), (34), and (35) of Theorem 2 could be weakened
somewhat, perhaps being replaced by

5" M@z) < a for z <9, M) > a for z > 6.

4. Estimation of a quantile using response, nonresponse data. Let F(z) be
an unknown distribution function such that
(43) FO) =a (0 < a<l), F'(8) > 0,
and let {z.} be a sequence of independent random variables each with the
distribution function Pr(z, < z] = F(z). On the basis of {2,} we wish to estimate
8. However, as sometimes happens in practice (bioassay, sensitivity data), we
are not allowed to know the values of 2z, themselves. Instead, we are free to
preseribe for each n a value z, and are then given only the values {y.} where
1 if 2z, < 2, (“response’),
(44) Yn = .
0 otherwise (“nonresponse’)
How shall we choose the values {2,} and how shall we use the sequence {y.}
to estimate 6?
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Let us proceed as follows. Choose z; as our best guess of the value ¢ and
let {a.} be any sequence of constants of type 1/n. Then choose values z» , x5, - -
sequentially according to the rule

(45) Tngr — Tn = Q@ — Ya).

Since

(46) Priyn = 1| @a] = F(za),  Prlyn. = 0] za] = 1 — F(z.),
it follows that (4) holds and that

47) M(z) = F(z).

All the hypotheses of Theorem 4 are satisfied, so that

§48) 11]1_r’r°1° Tn =0

1
n quadratic mean and hence in probability. In other words, {x,} is a consistent
estimator of 6.

The efficiency of {x,} will depend on z; and on the choice of the sequence
{a.}, as well as on the nature of F(z). For any given F(x) there doubtless exist
more efficient estimators of § than any of the type {z,} defined by (45), but
{z,} has the advantage of being distribution-free.

In some applications it is more convenient to make a group of r observations
at the same level before proceeding to the next level. The nth group of observa-
tions will then be

(4:9) Yo—Dr+1 5 5 Ynr

using the notation (44). Tet ¢, = arithmetic mean of the values (49). Then
setting

(50) Tag1 — Tp = an(@ — Fa),

we have M (z) = F(x) as before, and hence (48) continues to hold.

The possibility of using a convergent sequential process in this problem was
first mentioned by T. W. Anderson, P. J. McCarthy, and J. W. Tukey in the
Naval Ordnance Report No. 65-46(1946), p. 99.

5. A more general regression problem. It is clear that the problem of Section 4
is a special case of a more general regression problem. In fact, using the notation
of Section 2, consider any random variable ¥ which is associated with an observ-
able value x in such a way that the conditional distribution function of ¥ for
fixed x is H(y | x); the function M (x) is then the regression of ¥ on z.

The usual regression analysis assumes that M (z) is of known form with
unknown parameters, say

(61) M(x) = Bo + Bz,
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and deals with the estimation of one or both of the parameters 8; on the basis of
observations ¥, , y2, - -+, Y. corresponding to observed values ; , 3, -+ , & .
The method of least squares, for example, yields the estimators b; which minimize
the expression

(52) ; (ys — [Bo + Biw:))®

Instead of trying to estimate the parameters 8; of M (x) under the assumption
that M (z) is a linear function of z, we may try to estimate the value 6 such that
M(6) = a, where a is given, without any assumption about the form of M ().
If we assume only that H(y | ) satisfies the hypotheses of Theorem 2 then the
sequence of estimators {z,} of 6 defined by (7) will at least be consistent. This
indicates that a distribution-free sequential system of making observations,
such as that given by (7), is worth investigating from the practical point of
view in regression problems.

One of us is investigating the properties of this and other sequential designs
as a graduate student; the senior author is responsible for the convergence
proof in Section 3.



