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Abstract. Neural computations emerge from myriads of neuronal interactions occurring in4
intricate spiking networks. Due to the inherent complexity of neural models, relating the spiking5
activity of a network to its structure requires simplifying assumptions, such as considering models6
in the thermodynamic mean-field limit. In the thermodynamic mean-field limit, an infinite number7
of neurons interact via vanishingly small interactions, thereby erasing the finite size of interactions.8
To better capture the finite-size effects of interactions, we propose to analyze the activity of neural9
networks in the replica-mean-field limit. Replica-mean-field models are made of infinitely many10
replicas which interact according to the same basic structure as that of the finite network of interest.11
Here, we analytically characterize the stationary dynamics of an intensity-based neural network with12
spiking reset and heterogeneous excitatory synapses in the replica-mean-field limit. Specifically, we13
functionally characterize the stationary dynamics of these limit networks via ordinary differential14
equations derived from the Poisson Hypothesis of queuing theory. We then reduce this functional15
characterization to a system of self-consistency equations specifying the stationary neuronal firing16
rates. Of general applicability, our approach combines rate-conservation principles from point-process17
theory and analytical considerations from generating-function methods. We validate our approach18
by demonstrating numerically that replica-mean-field models better capture the dynamics of neural19
networks with large, sparse connections than their thermodynamic counterparts. Finally, we explain20
that improved performance by analyzing the neuronal rate-transfer functions, which saturate due to21
finite-size effects in the replica-mean-field limit.22
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1. Introduction. Intensity-based networks form a natural and flexible class of26

models for neural networks, whose study has a long and successful history in compu-27

tational neuroscience [48, 21, 60, 47]. In these models, the spiking activity of neural28

networks is represented in terms of point processes that are governed by neuronal29

“stochastic intensities” [19, 20]. Neuronal stochastic intensities model the instanta-30

neous firing rate of a neuron as a function of the spiking inputs received from other31

neurons, thereby mediating network interactions and possibly carrying out local com-32

putations. Detailed knowledge about intensity-based networks is mostly limited to33

simplifying limits such as the thermodynamic limit, i.e., with a very large number of34

neurons interacting very weakly [3, 4, 54, 26]. Such an approximation, which neglects35

the finite-size of neuronal interactions, precludes explaining and predicting several36

aspects of neural computations, including dynamical metastability [2, 57], correlation37

regime of activity [32, 37] and modulation of variability [18, 25]. There is a crucial38

need for a computational framework allowing for the analysis of structured neural39

networks, while taking into account the finiteness of neuronal interactions.40

Here, we develop a computational framework based on replica-mean-field (RMF)41

limits to address this need. RMF limits were introduced in two distinct contexts:42
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2 F. BACCELLI AND T. TAILLEFUMIER

in statistical physics with applications to information-capacity calculations in neuro-43

science [5, 45, 30] and in computer networking to analyze communication networks in44

terms of point processes [61, 50, 10, 8]. We are concerned with the latter approach.45

Instead of considering the finite neural network of interest, this RMF approach con-46

siders closely related limit networks made of infinitely many replicas with the same47

basic neural structure. The core motivation for considering RMF networks is that,48

under the assumption of independence between replicas, referred to as the “Poisson49

Hypothesis” [50, 51], these networks become analytically tractable. In this work, we50

exploit the Poisson Hypothesis to characterize analytically the long-time limit of a51

class of excitatory, intensity-based networks, called linear Galves-Lochërbach (LGL)52

models. In considering this specific class of networks, our goal is to establish the53

foundation for the RMF computational framework in a simple setting rather than54

aiming at generality.55

For concreteness, let us introduce the RMF framework for a simple intensity-based56

network, namely the “counting-neuron” model. The counting-neuron model consists57

of a fully-connected network of K exchangeable neurons with homogeneous synaptic58

weights µ. For each neuron i, 1 ≤ i ≤ K, the stochastic intensity λi increases by59

µ > 0 upon reception of a spike and reset upon spiking to its base rate b. Thus, its60

stochastic intensity is λi(t) = b+µCi(t), where Ci(t) is the number of spikes received61

at time t since the last reset. Assuming the network state {C1(t), . . . , CK(t)} has a62

well-defined stationary distribution, a natural question is: how does the stationary63

firing rate β = E [λi] depend on µ and K? Strikingly, despite its simplicity, direct64

treatment of the model, e.g., via its master Kolmogorov equation, fails to yield an65

exact answer for non-degenerate K and µ [46]. This failure is primarily due to the66

presence of high-order correlations among subsets of neurons. Virtually all available67

results are obtained via a mean-field approximation in the thermodynamic limit, i.e.,68

when letting K → ∞ (large networks) and µ → 0 [9] (vanishing interactions). In69

this approximation, high-order correlations disappear at the cost of neglecting the70

finite-size effects of neural constituents [59].71

In principle, RMF models can incorporate correlations up to a given integer order72

q. In this work, we only consider first-order replica models (q = 1), which capture73

first-order statistics. For the counting model and for an integer M > 0, the M -replica74

model of first order consists of M replicas, each comprising K counting neurons.75

Upon spiking, a neuron i in replica m, indexed by (i,m), delivers spikes with synaptic76

weight µ to the K−1 neurons (j, vj), j 6= i, where the replica destination vj is chosen77

uniformly at random. Thus, the probability for two replicas to interact over a finite78

period of time vanishes in the limit R → ∞, which intuitively justifies the Poisson79

Hypothesis. The asymptotic independence between replicas makes a direct analytical80

treatment of the model possible, just as in the traditional thermodynamic mean-field81

(TMF) limit. However, by contrast with the traditional TMF limit, the stationary82

state explicitly depends on the finite-size parameters K and µ. We define the RMF83

model of the counting model as the replica network obtained in the limit of infinitely84

many replicas, namely infinite M but fixed and finite K.85

The Poisson Hypothesis allows one to truncate the correlation terms due to neu-86

ronal interactions in the functional characterization of the stationary state of a single87

replica. For instance, in the counting neuron model, we will show that one can de-88

rive a single ordinary differential equation (ODE) for G, the probability-generating89

function (PGF) of a neuron count C:90

β−µzG′(z)+
(
β(K−1)(z−1)−b

)
G(z)=0 .(1.1)91
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The truncation of the correlation terms comes at the cost of introducing the firing92

rate β as an unknown parameter in (1.1). As the ODE (1.1) is otherwise analytically93

tractable, characterizing the RMF stationary state amounts to specifying the unknown94

firing rate β. Then, the challenge of the RMF approach consists in specifying the95

unknown firing rate via purely analytical considerations about a parametric system96

of ODEs. For this model, we will show that in the RMF limit, the stationary firing97

rate β is determined as the unique solution of98

β =
µcae−c

γ(a, c)
with a =

(K − 1)β + b

µ
and c =

(K − 1)β

µ
,(1.2)99

where γ denotes the lower incomplete Euler Gamma function.100

Introduced for the counting-neuron model, the analytical strategy presented above101

is at the core of our general RMF approach. In this work, we generalize this strategy102

to first-order replica networks with continuous relaxation of the stochastic intensities103

and with general heterogeneous excitatory synaptic connections. This generalization,104

which is stated in Theorem 3.8, is our main computational result. While establishing105

this result, we develop a general methodology for the stationary analysis of RMF106

models, which we summarize below. We also briefly discuss the relevance of applying107

the RMF limit to neural dynamics.108

109

Methodology. For clarity, we summarize the essential tenets of the methodology110

exposed herein. Even under the simplest assumptions, there are no known analyti-111

cal solutions to the Kolmogorov equations capturing the dynamics of intensity-based112

networks. Instead, one has to resort to analyzing caricatures of the dynamics based113

on some simplifications of its correlation structure. The rate-conservation principle114

(RCP) of Palm calculus offers a systematic way of proposing such simplifications.115

The Palm probability of a stationary point process can be interpreted as the distri-116

bution of this point process conditioned to have a point present at the origin of the117

time axis. The RCP consists in a conservation formula balancing the smooth drift of118

the stationary state variables and their jumps at epochs of the point processes. In119

the RCP formula, jump terms are expectations with respect to Palm probabilities,120

whereas the smooth dynamics leads to expectations with respect to the stationary121

law of the system. Typically, the simplification then consists in replacing these Palm122

expectations by stationary expectations, i.e., in ignoring the Palm bias. The resulting123

simplified functional equations can be solved in some fortunate cases. The key to such124

resolutions is to realize that our simplification of the RCP has a dynamical-system125

interpretation, which can be precisely formulated as a RMF limit. Indeed, the hall-126

mark of RMF limit is to decouple network constituents, thereby cancelling out Palm127

biases. This observation is instrumental in guaranteeing that there is at least one128

probabilistic, physical solution to our simplified functional equations. Such solutions129

are found by imposing analyticity requirements that any probabilistic solution must130

satisfy.131

132

Applications. We do not intend to systematically investigate the applications133

of the RMF approach to neuroscience here, but rather, to highlight two key features134

of the RMF limit. First, we numerically simulate exemplars of recurrent and feedfor-135

ward networks to compare the performance of RMF models and TMF models. We136

show that TMF models outperform TMF models in predicting the neuronal spiking137

rates in LGL networks with strong, sparse synaptic interactions. Second, we perform138

an asymptotic analysis of the neuronal rate-transfer functions, which are determined139
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4 F. BACCELLI AND T. TAILLEFUMIER

by the self-consistency equations in both the RMF and TMF limits. This analysis140

shows that the RMF limit fundamentally differs from the classical TMF limit because141

increasing synaptic weights at fixed input rates leads to saturation—an aspect that142

cannot be captured by TMF models which consequently overestimate firing rates. Fur-143

ther applications to neural-network analysis, such as higher-order models, are possible.144

Beyond neuroscience, our methodology is also applicable to generic intensity-based145

stochastic network dynamics. This suggests using the RMF framework to revisit clas-146

sical problems in queuing theory, particle-system theory, communication networks,147

population dynamics, epidemics, as well as completely new problems arising in, e.g.,148

social network dynamics.149

150

Structure. In Section 2, we introduce the point-process modeling framework for151

which we will develop RMF networks. In Section 3, we characterize analytically the152

stationary state of RMF networks. The neuroscience implications and the computa-153

tional relevance of this approach are discussed in Section 4. Section 5 comprises the154

proofs supporting the results presented in Section 2 and in Section 3. Future research155

directions are presented in Section Section 6, where we explain that similar strategies156

apply for i) any correlation orders q, namely with replica constituents being subsets157

of q interacting neurons rather than single neurons, and ii) for networks with hetero-158

geneous synaptic weights supporting both excitation and inhibition.159

160

Related work. The inspiration for the replica models proposed in this work is161

rooted in the theory of nonlinear Markov processes, which were introduced by McK-162

ean [40]. These processes were extensively used to study mean-field limits in queueing163

systems, initially by the Dobrushin school [61, 52, 50, 51], and later by M. Bramson164

[11]. This literature has two distinct components: i) a probabilistic component prov-165

ing asymptotic independence from the equations satisfied by the non-linear Markov166

process, and ii) a computational component deriving closed-form expressions for the167

mean-field limit of the system of interest. These two components jointly led to a168

wealth of new results in queueing theory, concerning both open and closed queueing169

networks, e.g., [61]. The aim of this work is to show that, just as in queueing theory,170

studying neural networks in the RMF limit is computationally tractable. Finding171

moment-generating functions by imposing condition of analyticity on some solutions172

is a classical approach in queueing theory [56]. The RCP simplification described173

in the methodology summary were used to analyze point-process-based dynamics in174

peer-to-peer networks [7] and in wireless networks [53]. However, the link established175

between RMF models and simplified RCP is novel. Our approach also elaborates on176

prior attempts to solve the neural master equations in computational neuroscience.177

Brunel et al. introduced mean-field limits for large neural networks with weak inter-178

actions from a computational perspective [1, 14, 13]. Touboul et al. then adapted the179

ideas of “propagation of chaos” for neural networks in the thermodynamic mean-field180

limit [9, 58, 49]. Their results were specialized to spiking models with memory resets181

by Galves and Locherbäch, who also provided perfect algorithms to simulate the sta-182

tionary states of infinite networks [29, 22]. Closer to our approach, Buice, Cowan, and183

Chow adapted techniques from statistical physics to analyze the hierarchy of moment184

equations obtained from the master equations [16, 17]. These authors were able to185

truncate the hierarchy of moment equations to consider models amenable to finite-size186

analysis via system-size or loop expansion around the mean-field solution [12]. These187

authors also showed by field-theoretic arguments that the dynamics obtained by mo-188

ment closure was indeed that of a physical system. Although the master equation of189
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Buice et al. does not have a natural small parameter, the moment-closure approach190

was implemented to solve the neural master equations in the thermodynamic limit191

[15]. By contrast, our approach considers a new mean-field regime, that of the RMF192

model for finite-size neural networks, without any scaling of the interactions.193

194

2. Point-process framework for finite neural networks. In this section,195

we introduce the point-process modeling framework for which we will develop RMF196

networks. In Subsection 2.1, we define the intensity-based neural networks that we197

consider throughout this work, i.e., linear Galves-Löcherbach (LGL) networks. In198

Subsection 2.2, we justify that finite LGL networks admit a well-defined stationary199

regime with exponentially integrable neuronal stochastic intensities. In Subsection 2.3,200

we derive functional equations characterizing the stationary joint distribution of the201

neuronal stochastic intensities via the use of the RCP.202

2.1. Linear Galves-Löcherbach models. We consider a finite assembly of K203

neurons whose spiking activity is modeled as the realization of a system of simple point204

processes without common points N = {Ni}1≤i≤K on R defined on an underlying205

measurable space (Ω,F). For all neurons 1 ≤ i ≤ K, we denote by {Ti,n}n∈Z, the206

sequence of successive spiking times with the convention that almost surely Ti,0 ≤ 0 <207

Ti,1 and Ti,n < Ti,n+1. Each point process Ni is a family {Ni(B)}B∈B(R) of random208

variables with values in N∪{∞} indexed by the Borel σ-algebra B(R) of the real line209

R. Concretely, the random variable Ni(B) counts the number of times that neuron210

i spikes within the set B, i.e., Ni(B) =
∑
n∈Z 1B(Ti,n). Setting the processes Ni,211

1 ≤ i ≤ K, to be independent Poisson processes defines the simplest instance of our212

point-process framework as a collection of non-interacting neurons.213

To model spike-triggered interactions within the network, we consider that the214

rate of occurrences of future spikes depends on the spiking history of the network.215

In other words, we allow the instantaneous firing rate of neuron i to depend on the216

times at which neuron i and other neurons j 6= i have spiked in the past. Formally,217

the network spiking history {Ft}t∈R is defined as a non-decreasing family of σ-fields218

such that, for all t,219

FNt = {σ (N1(B1), . . . , NK(BK)) |Bi ∈ B(R) , Bi ⊂ (−∞, t]} ⊂ Ft,(2.1)220

where FNt is the internal history of the spiking process N . The network spiking221

history {Ft}t∈R determines the rate of occurrence of future spikes via the notion of222

stochastic intensity. The stochastic intensity of neuron i, denoted by {λi(t)}t∈R, can223

be seen as a function of {Ft}t∈R specifying the instantaneous firing rate of neuron i.224

It is formally defined as the Ft-predictable process {λi(t)}t∈R satisfying225

E [Ni(s, t] | Fs] = E
[∫ t

s

λi(s) ds
∣∣∣Fs] ,226

for all interval (s, t] [35]. Stochastic intensities generalize the notion of rate of events,227

or hazard function, to account for generic history dependence beyond that of Poisson228

processes or renewal processes.229

Specifying the history-dependence of the neuronal stochastic intensities entirely230

defines a network model within the point-process framework. In this work, we con-231

sider models for which the stochastic intensities λ1, . . . , λK obey a system of coupled232
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6 F. BACCELLI AND T. TAILLEFUMIER

stochastic equations233

λi(t) = λi(0) +
1

τi

∫ t

0

(bi − λi(s)) ds+234

∑
j 6=i

µij

∫ t

0

Nj(ds) +

∫ t

0

(
ri − λi(s)

)
Ni(ds) ,(2.2)235

where the spiking processes Ni have stochastic intensity λi. The above system of236

stochastic equations characterizes the history-dependence of the stochastic intensities.237

The first integral term indicates that in between spiking events, λi deterministically238

relaxes toward its base rate bi > 0 with relaxation time τi. The second integral terms239

indicates that a spike from neuron j 6= i causes λi to jump by µij ≥ 0, the strength240

of the synapse from j to i. Finally, the third integral term indicates that λi resets to241

0 ≤ ri ≤ bi upon spiking of neuron i. Taking ri < bi models the refractory behavior242

of neurons whereby spike generation causes the neuron to enter a transient quiescent243

phase.244

Thus-defined, our model can be seen as a system of coupled Hawkes processes with245

spike-triggered memory reset and belongs to the Galves-Löcherbach class of models246

[29]. Defining Ti,0(t) to be the last spiking time before time t, i.e., Ti,0(t) = Ti,0 ◦θt =247

sup{s ≤ t|Ns < Nt}, where θt is the time-shift operator, the stochastic intensity λi(t)248

can be written under Galves-Löcherbach form249

λi(t) = φi

∑
j

µij

∫ t

Ti,0(t)

gi(t− s)Nj(ds), t− T0(t)

 ,(2.3)250

with linear intensity functions φi and exponentially decaying kernels gi:251

φi(x, s) = x+ bi + (ri − bi)e−
s
τi and gi(t− s) = e

− t−sτi .(2.4)252

For this reason, we refer to our model as the linear Galves-Löcherbach model. Galves-253

Löcherbach models have been primarily studied for infinite networks, notably to char-254

acterize the mean-field dynamical limit [22, 23] or to construct perfect simulation255

algorithms [34]. Here, we focus on finite, excitatory assemblies of LGL neurons to256

approximate their dynamics via independent model akin to mean-field models but257

without taking any scaling limit. That being said, we do not consider the proposed258

framework for its biological relevance per se as we do not include important aspects259

of neural dynamics such as inhibition. Our goal is rather to develop ideas amenable260

to generalization in a simple setting.261

2.2. Stationary Markovian dynamics. In LGL networks, the stochastic in-262

tensity λi(t) determines the instantaneous spiking rate of neuron i and can be viewed263

as the state of neuron i at instant t. When considered collectively, the stochas-264

tic intensities specify the network state λ(t) = {λ1(t), . . . , λK(t)} which follows a265

continuous-time, pure-jump Markovian dynamics with infinitesimal generator266

A[f ](λ) =
∑
i

bi − λi
τi

∂λif(λ) +
∑
i

(
f(λ+ µi(λ))− f(λ)

)
λi ,(2.5)267

for all f in D(A) the domain of A. In the above definition, the first sum collects268

the relaxation terms of the dynamics whereas the second sum corresponds to the269
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interaction jumps triggered by the spiking of neuron i:270

[µi(λ)]j =

{
µji if j 6= i

ri − λi if j = i
.(2.6)271

Conditionally to the identity of the spiking neuron, the interaction jumps have fixed272

components set by the synaptic weights and a state-dependent component due to273

spiking reset. The spiking reset to a history-independent state introduces a form of274

degeneracy which substantially hinders the analysis of the network dynamics, espe-275

cially with respect to the regularity of the law of λ. In turn, for lack of a regularity276

characterization, it is unclear how to derive the Kolmogorov forward equation satisfied277

by λ(t) from the Kolmogorov backward equation ∂tu+A[u] = 0.278

Despite these regularity complications, the stability of the network dynamics279

can be established within the framework of Harris Markov chains [43], whereby the280

continuous-time Markov chain {λ(t)}t∈R proves to be Harris ergodic as long as ri > 0281

for all neurons i. As the Markov chain {λ(t)}t∈R is Harris ergodic (see the proof in282

Subsection 5.1.1), the network dynamics admits a unique invariant measure p on RK283

satisfying284 ∫
RK
A[f ](λ) p(dλ) = 0 ,(2.7)285

for all f in D(A). Sampling λ(0) according to the stationary measure p defines the286

stationary version of the Markov chain λ, whose law P is invariant under time shifts,287

i.e., P ◦ θt = P for all t > 0, and whose definition is naturally extended on the whole288

real line R. Coupling techniques using Nummelin splittings show that non-stationary289

dynamics converge at least exponentially in total variation toward the stationary limit290

process [33]. The present work is only concerned with the stationary version of the291

network dynamics and, in the following, the notation λ always refers to that stationary292

version. Moreover, processes induced by λ, such as the point processes Ni, inherit293

the stationary property.294

We state the technical results justifying the existence of the stationary regime of295

the dynamics in Section 5. A key step is to check a Foster-Lyapunov drift condition in296

Proposition 5.1 for the infinitesimal generator A acting on exponential scale functions:297

Vu(λ) = exp (u
∑
i λi), where u is an arbitrary real (see Subsection 5.1.1). The298

satisfaction of this condition implies that the stationary measure p is exponentially299

integrable [44]: for all u > 0, we have300

E [Vu(λ)] =

∫
RK

eu
∑
i λi p(dλ) <∞ .(2.8)301

Exponential integrability implies the finiteness of the stationary moments of all or-302

ders. Thus, within the context of finite LGL networks, the assumptions of bounded303

intensities function φi is not required for the existence of stationary moments.304

Remark 2.1. The regularity of the stationary measure of Galves-Locherbach net-305

works has been studied in [38] under assumption of bounded intensity functions φi306

in C∞(R). In particular, a criterion is given for the stationary measure to admit a307

Ck(R) density with respect to the Lebesgue measure on R for finite relaxation times308

infi τi > 0.309

2.3. Functional equation for generating functions. Within the stationary310

framework, it is natural to investigate the relation between low-dimensional features311
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8 F. BACCELLI AND T. TAILLEFUMIER

of the dynamics, such as the moments of the invariant measure, and the structure312

of the network. In particular, it would be highly desirable to express the individual313

mean spiking rates, i.e., the average intensities βi = E [Ni((0, 1])], in terms of the314

model parameters, namely the time constants τi, the base rates bi, the reset values315

ri, and most importantly, the synaptic weights µij . However, direct analysis of the316

model via its infinitesimal generator does not provide any tractable characterization317

of the stationary moments βn1,...,nK = E [λn1
1 . . . λnK1 ]. In fact, deriving equations318

for the moments βn1,...,nK from the infinitesimal generator would yield a non-closed319

hierarchy of equations, whereby equations characterizing moments of a given order320

requires knowledge of moments of higher order [17, 46].321

An alternative to such direct approaches consists in looking for equations satisfied322

by functional transforms of p, such as the Laplace transform. The reason for consider-323

ing functional transforms is that at stationarity, one can exploit the RCP [6] to exhibit324

a functional characterization of these transforms, which can be solved by analytical325

methods for judiciously chosen functional transforms. In practice, we find that the326

Laplace transform—or rather the moment-generating function (MGF)—of p proves327

the most amenable for the analytical treatment of LGL networks. By exponential328

integrability of the stationary distribution p (2.8), the MGF of p329

u = {u1, . . . , uK} 7→ L(u) = E

[
exp

(
K∑
i=1

uiλi

)]
,(2.9)330

is well-defined on all RK+ , and thus characterizes the probability distribution p. In331

particular, the moments of p can be derived from L as332

mn1,...,nK = E [λn1
1 . . . λnK1 ] =

∂
∑
i niL∏
i ∂λ

ni
i

∣∣∣∣
λ=0

.(2.10)333

The MGF of the stationary distribution p constitutes the functional transform of334

choice for the analysis of LGL networks because it admits a simple characterization335

via RCPs:336

Proposition 2.2. The full K-dimensional MGF L satisfies the first-order linear337

PDE338

(2.11)339 (∑
i

uibi
τi

)
L−

∑
i

(
1 +

ui
τi

)
∂uiL+

∑
i

e(uiri+
∑
j 6=i ujµji)∂uiL

∣∣∣
ui=0

= 0 .340

Proof. Given a function f in the domain D(A), the Ft-predictable process defined341

by342

f(λ(t))−
∫ t

0

A[f ](λ(s)) ds(2.12)343

is a martingale. By stationarity of {λ(t)}t∈R, we have E [f(λ(t))] = E [f(λ(0))] and344

Dynkin’s formula reads345

E
[∫ t

0

A[f ](λ(s)) ds

]
=

∫ t

0

E [A[f ](λ(s))] ds = 0 .(2.13)346
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Moreover, also by stationarity of {λ(t)}t∈R, the expectation in the integrand is con-347

stant, i.e., E [A[f ](λ(s))] = E [A[f ](λ)] with:348

E [A[f ](λ)] =
∑
i

E
[
bi − λi
τi

∂λif(λ) +
(
f(λ+ µi(λ))− f(λ)

)
λi

]
= 0 .(2.14)349

Specializing the above relation to exponential functions f(λ) = e
∑
i uiλi yields350

∑
i

E
[
bi − λi
τi

uie
∑
j ujλj +

(
euiri+

∑
j 6=i uj(λj+µji) − e

∑
j ujλj

)
λi

]
= 0 .(2.15)351

which can be written under the form352 ∑
i

biui
τi

E
[
e
∑
j ujλj

]
−
∑
i

(
1 +

ui
τi

)
E
[
λie

∑
j ujλj

]
353

+
∑
i

e(uiri+
∑
j 6=i ujµji)E

[
λie

∑
j 6=i ujλj

]
= 0 .(2.16)354

Equation (2.11) follows from recognizing the expectation terms as values of the MGF355

L and its partial derivatives ∂λiL.356

Equation (2.16) is a non-local first-order linear partial differential equation (PDE)357

with boundary terms involving partial derivatives. Conceptually, this equation can358

be viewed as depicting the stationary state of a K-dimensional transport equation in359

the negative orthant, with linear drift (1 + u1/τ1, . . . , 1 + uK/τK), with linear death360

rate
∑
i biui/τi, and with non-local birth rate related to fluxes through the hyperplane361

{λi = 0}, 1 ≤ i ≤ K. Despite this conceptual simplicity, the presence of flux-related,362

non-local, birth rate precludes one from solving (2.16) except for the simplest cases,363

i.e., for K ≤ 2. To gain knowledge about the typical state of LGL networks in the sta-364

tionary limit, one has to resort to approximation schemes, such as moment-truncation365

methods, which can yield unphysical solutions without probabilistic interpretations366

and are often analytically intractable [24]. The purpose of the present work is to in-367

troduce a computational framework circumventing the above difficulties by studying368

replica versions of the LGL networks of interest, which admit stationary states that369

are both probabilistically well-posed and analytically tractable.370

3. The Replica-mean-field approach. In this section, we propose to decipher371

the activity of LGL networks via limit networks made of infinitely many replicas with372

the same basic network structure. In Subsection 3.1, we define the RMF limit for373

LGL networks and the associated RMF ansatz, a system of ODEs characterizing374

their stationary regime. In Subsection 3.2, we show that in practice, the RMF ansatz375

can be derived without explicit reference to the replica framework via a computational376

tool, called Palm calculus. In Subsection 3.3, we reduce the RMF ansatz to a set of377

self-consistency equations specifying the stationary neuronal stochastic intensities.378

3.1. Replica-mean-field models. Replica models are first rigorously defined379

for a finite number of replica and admit similar, albeit higher dimensional, functional380

characterization as plain LGL networks. However, in the RMF limit, the Poisson Hy-381

pothesis allows one to truncate correlation terms due to neuronal interaction, yielding382

a set of ODEs characterizing the RMF stationary state.383
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10 F. BACCELLI AND T. TAILLEFUMIER

3.1.1. Finite-replica models. In order-one replica models, each replica con-384

sists of the same number of neurons as the original LGL networks, denoted by K,385

and within each replica, neurons are labelled by a class index 1 ≤ i ≤ K. For a finite386

model with M replicas, let Nm,i denote the point process representing the spiking387

activity of the neuron of class i in replica m, referred to as neuron (m, i). Moreover,388

let {λm,i}1≤m≤M,1≤i≤K , denote the corresponding stochastic intensity. Instead of in-389

teracting with neurons in the same replica upon spiking, neuron (m, i) interacts with390

target neurons of classes j 6= i from independently and uniformly chosen replicas and391

with synaptic weight µij . Thus, replica models consist in a caricature of the initial392

model where the interactions between neurons are randomized while keeping the finite393

structure of the original network. The finite replica dynamics can be specified via the394

introduction of stochastic processes registering the sequence of neuronal interactions395

across replicas. For all 1 ≤ m ≤ M, 1 ≤ i ≤ K, let {vm,ij(t)}t∈R be stochastic pro-396

cesses such that for every spiking time T , i.e., for every point of Nm,i, the random397

variables {vm,ij(T )}j are independent of the past, mutually independent, and uni-398

formly distributed over {1, . . . ,M}\{m}. Concretely, vm,ij indicates the index of the399

replica containing the neuron of class i targeted by neuron (m, j) upon spiking. Then,400

the stochastic intensities {λm,i}1≤m≤M,1≤i≤K characterizing the M -replica dynamics401

of the finite LGL network obey the following system of coupled stochastic equations:402

λm,i(t) = λm,i(0) +
1

τi

∫ t

0

(
bi − λm,i(s)

)
ds403

+
∑
n 6=m

∑
j 6=i

µij

∫ t

0

1{vn,ij(s)=m}Nn,j(ds) +

∫ t

0

(
ri − λm,i(s)

)
Nm,i(ds) .(3.1)404

These equations, which generalize (2.2), entirely define the Markovian dynamics of405

finite replica models for LGL networks. Similarly, the infinitesimal generator (2.5) can406

be generalized to the finite replica setting. To account for randomized interactions, let407

us introduce the K-dimensional stationary random vectors vm,i, defined by [vm,i]j =408

vm,ij(Tm,i,0) if j 6= i and [vm,i]i = m, taking values in the set of integers409

Vm,i =
{
v ∈ [1 . . .M ]K | vi = m and vj 6= m, j 6= i

}
,(3.2)410

whose cardinality is |Vm,i| = (M−1)K−1. By definition, the collection of vectors vm,i,411

which indicates the target neurons of neuron (m, i), are identically and uniformly412

distributed on the sets Vm,i. Consequently, the infinitesimal generator for the M -413

replica Markovian dynamics can be written as414

A[fu](λ) =

K∑
i=1

M∑
m=1

(
bi − λm,i

τi

)
∂λm,ifu(λ)415

+

K∑
i=1

M∑
m=1

1

|Vm,i|
∑
v∈Vm,i

(
f(λ+ µm,i,v(λ))− f(λ)

)
λm,i ,(3.3)416

where the update due to the spiking of neuron (m, i) is defined by417

[
µm,i,v(λ)

]
j,n

=

 µji if j 6= i , n = vj ,
ri − λm,i if j = i , n = vj ,

0 otherwise.
(3.4)418
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The arguments developed in Subsection 2.2 for the Markovian analysis of plain LGL419

networks naturally extend to finite replica models. In particular, M -replica networks420

are Harris ergodic and admit a stationary distribution p. In turn, we can apply the421

RCP of Subsection 2.3 to the stationary M -replica dynamics to obtain a functional422

characterization for the MGF of p:423

u 7→ L(u) = E

[
exp

(
M∑
m=1

K∑
i=1

uiλm,i

)]
.(3.5)424

Specifically, in Subsection 5.1.2, we show the following result on the LGL networks425

defined in Subsection 2.1:426

Proposition 3.1. For all LGL networks, the M -replica MGF L satisfies the first-427

order linear PDE428 ∑
m

∑
i

bium,i
τi

L(u)−
∑
m

∑
i

(
1 +

ui
τi

)
∂λm,iL(u)429

+
∑
m

∑
i

1

|Vm,i|
∑
v∈Vm,i

e(um,iri+
∑
j 6=i uvj,jµji)L(u) = 0 .(3.6)430

The above characterization of replica networks is not simpler than that of plain LGL431

networks. However, the expression of the infinitesimal generator (3.3) shows that432

randomized interactions effectively implement an averaging over replicas. In the limit433

of a large number of replicas M → ∞, one expects such an averaging to erase the434

dependence structure of spiking interactions, and to yield independence between repli-435

cas. Numerical simulations support such a mean-field behavior, which is conceptually436

similar to that of the thermodynamic limit, i.e., with K →∞ and vanishing interac-437

tions scaling as 1/K, but retains important features of the finite network structure.438

Intuitively, independence between two replicas emerges from the so-called “Poisson439

Hypothesis” [50, 51]: Over a finite period of time, the probability for a particular neu-440

ron to receive a spike from another given neuron scales as 1/M . Thus, as the number441

of replicas increases, interactions between distinct replicas become ever scarcer, lead-442

ing to replica independence. By the same intuition, we expect spiking deliveries to443

distinct replicas to be asymptotically distributed as independent Poisson point pro-444

cesses, which is precisely the Poisson Hypothesis. Proving the validity of the Poisson445

Hypothesis requires to establish the property of propagation of chaos [55] in the limit446

of an infinite number of replicas M → ∞. This is beyond the aims of our analyis.447

Here, we conjecture that the Poisson Hypothesis holds in the limit M → ∞, and448

our goal is to develop the computational framework for the analysis of infinite-replica449

LGL networks, which we refer to as RMF models.450

3.1.2. The replica-mean-field ansatz . Under the Poisson Hypothesis, neu-451

rons from distinct replicas of an RMF network spike independently. Here, we show452

that this assumption of independence leads to a simple functional characterization of453

the MGF of a single replica, which we call the RMF ansatz. Consider for instance the454

MGF associated to the first replica:455

u 7→ L(u) = E

[
exp

(
K∑
i=1

ui,1λ1,i

)]
.(3.7)456
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12 F. BACCELLI AND T. TAILLEFUMIER

Denoting ui,1 = u1 and λi = λ1,i for conciseness, the RCP for the M -replica network457

applied to f(u) = e
∑K
i=1 uiλi (see Subsection 5.1.2) yields458

K∑
i=1

(
biui
τi

L(u)− ui
τi
∂uiL(u)

)
+

K∑
i=1

(euiri − 1) ∂uiL(u)
∣∣
ui=0

459

+

K∑
i=1

∑
m>1

1

|Vm,i|
∑
v∈Vm,i

(
e

(∑
j 6=i,vj=1 ujµji

)
− 1

)
E
[
λm,ie

∑K
i=1 uiλi

]
= 0 .(3.8)460

The above equation would constitute an autonomous ODE for L(u), were it not for461

the interactions with replicas M > 1, as mediated by the last term of (3.8). The462

independence assumption of the Poisson Hypothesis allows us to close (3.8) in the463

limit of an infinite number of replica M → ∞. The first step in this direction is to464

observe that in the limit M → ∞, only certain vectors v contribute meaningfully465

to the interaction terms: these are those vectors representing spike deliveries from a466

neuron (m, j), m > 1, such that only one spike is delivered to the first replica. In467

fact, we elaborate on this observation in Subsection 5.1.2 to show that468

K∑
i=1

∑
m>1

1

|Vm,i|
∑
v∈Vm,i

(
e

(∑
j 6=i,vj=1 ujµji

)
− 1

)
E
[
λm,ie

∑K
i=1 uiλi

]
=469

K∑
i=1

∑
j 6=i

(eujµji − 1)
1

M − 1

∑
m>1

E
[
λm,ie

∑K
i=1 uiλi

]
+ o(1/M) .(3.9)470

By exchangeability of the replicas, all expectation terms in the right-hand side above471

are equal. Moreover, neurons of the same class have identical mean intensities: βi =472

E [λm,i]. Exploiting the assumption of independence from the Poisson Hypothesis, we473

thus have474

E
[
λm,ie

∑K
i=1 uiλi

]
= E [λm,i]E

[
e
∑K
i=1 uiλi

]
= βiL(u) .(3.10)475

Using the fact that we also have βi = ∂uiL(u)|ui=0, we can write (3.8) as476

K∑
i=1

−ui
τi
∂uiL(u) +

K∑
i=1

uibi
τi

+
∑
j 6=i

(euiµij − 1)βj

L(u) +477

(euiri − 1) ∂uiL(u)
∣∣
ui=0

= 0 .(3.11)478

The above equation is separable. In keeping with the assumption of independence,479

plugging in the product form L(u) =
∏K
i=1 Li(ui) with Li(ui) = E

[
euiλi

]
and βi =480

L′i(0), yields the final form of the RMF ansatz :481

Definition 3.2. The RMF ansatz for the LGL network of K neurons specified482

by the interaction weights µij, the relaxation times τi, the base rates bi, and by the483

reset values ri, 1 ≤ i ≤ K, is defined as the system of coupled ODEs:484

−
(

1 +
u

τi

)
L′i(u) +

ubi
τi

+
∑
j 6=i

(euµij − 1)βj

Li(u) + βie
uri = 0 .(3.12)485
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Notice that setting u→ 0 in (3.12) automatically yields L′i(0) = βi. Thus, at the486

cost of introducing the mean firing rates β = {β1, . . . , βK}, the Poisson Hypothesis487

allows us to write a closed set of ODEs for the one-dimensional MGF Li, should488

the RMF ansatz be true. However, in the RMF ansatz, the mean firing rates β are489

unknown parameters, and the MGF normalization condition, Li(0) = 1, does not490

dispel this indetermination. More generally, there is a priori no reason for the RMF491

ansatz to admit a MGF as a solution. In the following, we show that for the RMF492

ansatz to admit a MGF solution, β needs to solve a set of self-consistency equations.493

We will first account for this result in the special case of the counting-neuron494

model, i.e., for a fully connected network with homogeneous synaptic weights and495

without relaxation: µij = µ and τi → ∞. For the counting-neuron model, it is best496

to work with the probability-generating function (PGF) associated to the counting497

vector C = {Ci, . . . , Cn}:498

z ∈ [0, 1]K 7→ G(z) = E

[
K∏
i=1

zCii

]
= L(ln zi1 , . . . , ln ziK ) ,(3.13)499

rather than with the actual MGF of C, still denoted by L. Specifically, we have:500

Definition 3.3. The RMF ansatz for the network of K node counting neuron501

network specified by the interaction weight µ, and the reset values r, 1 ≤ i ≤ K, is502

defined as the ODE:503

β − µzG′(z) +
(
β(K − 1)(z − 1)− r

)
G(z) = 0 .(3.14)504

Before proceeding to the reduction of the RMF ansatz to a set of self-consistency505

equations for β, we show that the RMF ansatz can be obtained without any explicit506

reference to replica models. In doing so, our aim is to show that the RMF ansatz507

can be established intuitively via independence assumptions, and without in-depth508

probabilistic analysis.509

3.2. Functional equations via Palm calculus. The derivation of the RMF510

ansatz relies on a computational tool from the theory of point processes, called Palm511

calculus [39, 41].512

3.2.1. Primer on Palm calculus. Palm calculus treats stationary point pro-513

cesses from the point of view of a typical point, i.e., a typical spike, rather than from514

the point of view of a typical time, i.e., in between spikes. Here, we only introduce515

Palm calculus via the two formulae that play a key role in deriving the RMF ansatz516

[6]. With no loss of generality, consider a stationary point process Ni defined on some517

probability space (Ω,F ,P), representing the spiking activity of a neuron. If {θt} is a518

time shift on (Ω,F) which preserves P, we say that the stationary point process N is519

θt-compatible in the sense that N(B) ◦ θt = N(B + t) for all B in B(R) and t ∈ R.520

With this notation, the Palm probability of N , which gives the point of view of a521

“typical” point on N , is defined on (Ω,F) for all event A in F and for all time t > 0522

by523

P0
N (A) =

1

βt
E

[∑
n∈Z

1A(θTn)1(0,t](Tn)

]
=

1

βt
E

[∫
(0,t]

(1A ◦ θs)N(ds)

]
,(3.15)524

where β = E [N((0, 1])]. Informally, P0
N (A) represents the conditional probability525

that a train of spikes falls into A knowing that a spike happens at t = 0. Moreover,526
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14 F. BACCELLI AND T. TAILLEFUMIER

suppose that N admits a stochastic intensity λi, representing the instantaneous firing527

rate, and set A = {λ(0) ∈ B} for some B in B(R+), then528

P0
N (A) = P0

N [λ(0−) ∈ B] = P [λ(0−) ∈ B |N({0}) = 1](3.16)529

specifies the stationary law of the stochastic intensity λi just before spiking.530

The notions of Palm probability and stochastic intensity provide the basis for the531

theory of Palm calculus. Let us consider another non-negative stochastic process X532

defined on the same underlying probability space (Ω,F) as that of N . If X is also533

θt-compatible in the sense that X(s) ◦ θt = X(s+ t) for all t, s ∈ R, then the first key534

formula Palm calculus directly follows from the definition (3.15) and reads535

E0
N [X(0−)] =

1

βt
E
[∫ t

0

X(s)N(ds)

]
,(3.17)536

where E0
N [·] denotes the expectation with respect to P0

N . In the following, the process537

X intervening in the above expression will typically be a function of the stochastic538

intensity of a neuron. The second key formula, which follows from the Papangelou539

theorem, relates Palm probabilities to the underlying probability via the notion of540

stochastic intensity [6]. Specifically, if N admits a stochastic intensity λ and X has541

appropriate predictability properties, then for all real valued functions f we have:542

E [f(X)λi] = βE0
N

[
f
(
X(0−)

)]
.(3.18)543

The formulae (3.17) and (3.18) will be the only results required to establish rate-544

conservation equations via Palm calculus.545

3.2.2. Rate-conservation equations. Because interactions are temporally lo-546

calized at spiking times, Palm calculus is a convenient tool to express rate-conservation547

equations in LGN networks. In fact, Palm calculus allows one to obtain rate-con-548

servation equations intuitively from the stochastic equations describing the evolution549

of the conserved quantity. For our purpose of recovering the RMF ansatz from Def-550

inition 3.2, that conserved quantity is euλi , where u is some fixed real and where λi551

is the stochastic intensity of neuron i, 0 ≤ i ≤ K. By Ft-predictability and sta-552

tionarity of the network dynamics λt, for all real u, the process {euλi(t)}t∈R is also553

a Ft-predictable stationary process. Moreover, this process satisfies the stochastic554

equation555

euλi(t) = euλi(0) +
u

τi

∫ t

0

(
bi − λi(s)

)
euλi(s) ds556

+
∑
j 6=i

(euµij − 1)

∫ t

0

euλi(s)Nj(ds) +

∫ t

0

(
euri − euλi(s)

)
Ni(ds) ,(3.19)557

where the Ni, 0 ≤ i ≤ K, are Ft−predictable counting processes with stochastic558

intensity λi. In (3.19), the first integral term is due to relaxation toward base rate559

bi, the second integral term is due to interaction with spiking neurons j 6= i, and the560

last term is due to post-spiking regeneration of neuron i at reset value ri. Taking561

the expectation of (3.19) with respect to the stationary measure of λ yields the rate-562

conservation equations of {euλi(t)}t∈R:563

u

τi
E
[∫ t

0

(
bi − λi(s)

)
euλi(s) ds

]
564

+
∑
j 6=i

(euµij − 1)E
[∫ t

0

euλi(s)Nj(ds)

]
+ E

[∫ t

0

(
euri − euλi(s)

)
Ni(ds)

]
= 0 ,(3.20)565
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where we have used that by stationarity, we have E
[
euλi(t)

]
= E

[
euλi(0)

]
= E

[
euλi

]
.566

Again, by stationarity, the expectation of the relaxation integral term can be expressed567

as568

E
[∫ t

0

(
bi − λi(s)

)
euλi(s) ds

]
= tE

[
(bi − λi)euλi

]
,(3.21)569

where βi = E [λi] = E [Ni((0, 1])] is the mean intensity of Ni. In turn, introducing570

the Palm distribution P0
i of the process λ with respect to Ni allows us to write the571

expectations of the remaining interaction and reset integral terms as expectations572

with respect to Palm distributions P0
i , 1 ≤ i ≤ K. Specifically, by applying formula573

(3.17), we have574

E
[∫ t

0

euλi(s)Nj(ds)

]
= (βjt)E0

j

[
euλi(0

−)
]
,(3.22)575

E
[∫ t

0

(
euri − euλi(s)

)
Ni(ds)

]
= (βit)E0

i

[
euri − euλi(0

−)
]
,(3.23)576

where E0
i [·] denotes expectation with respect to P0

i . With these observations, the577

rate-conservation equation can be expressed under a local form, i.e., without integral578

terms, but at the cost of taking expectation with respect to distinct probabilities:579

u

τi
E
[
(bi − λi)euλi

]
580

+
∑
j 6=i

(euµij − 1)βjE0
j

[
euλi(0

−)
]

+ βiE0
i

[
euri − euλi(0

−)
]

= 0 .(3.24)581

The above equation can then be expressed under a local form involving only the582

stationary measure thanks to Papangelou’s theorem (3.18), allowing us to write583

βjE0
j

[
euλi(0−)

]
= E

[
λje

uλi
]

and βiE0
i

[
euλi(0−)

]
= E

[
λie

uλi
]
.(3.25)584

Using the above relations in (3.24), the final form of the exact rate-conservation585

equations of {euλi(t)}t∈R, 1 ≤ i ≤ K, is586

−
(

1 +
u

τi

)
E
[
λie

uλi
]

+
ubi
τi

E
[
euλi

]
587

+
∑
j 6=i

(euµij − 1)E
[
λje

uλi
]

+ βie
uri = 0 ,(3.26)588

where we have dropped time dependence for stationary random variables.589

3.2.3. Moment truncation. Applying the RCP under the Poisson Hypoth-590

esis effectively truncates correlation terms due to interactions in the exact rate-591

conservation equation of replica models. Although not apparent in the Markovian592

treatment of Subsection 3.1.2, such a truncation become straightforward when work-593

ing on the rate-conservation equation (3.26) obtained via Palm calculus. Indeed,594

(3.26) can be interpreted as a differential equation for the one-dimensional MGF of595

λ defined by Li(u) = E
[
euλi

]
for all i. However, (3.26) for Li involves the second-596

order statistics of λ via the terms E
[
λje

uλi
]
, which is not captured by Li but by the597

two-dimensional MGFs of λ. Not surprisingly, making the Poisson Hypothesis allows598

This manuscript is for review purposes only.



16 F. BACCELLI AND T. TAILLEFUMIER

one to close (3.26), as it implies that the stochastic intensities of distinct neurons are599

independent variables:600

E
[
λje

uλi
]

= βjE
[
euλi

]
for j 6= i .(3.27)601

Thus, under the Poisson Hypothesis, (3.26) becomes an equation about the random602

variable λi alone:603

−
(

1 +
u

τi

)
E
[
λie

uλi
]

604

+

ubi
τi

+
∑
j 6=i

(euµij − 1)βj

E
[
euλi

]
+ βie

uri = 0 .(3.28)605

The above equation is precisely that intervening in the mean-field-replica ansatz606

in Definition 3.2. As announced, it has been obtained by truncation of the rate-607

conservation equations via Palm calculus and without any explicit reference the RMF608

network. Considering (3.28) as a heuristic simplification of (3.26) leads to a natural609

question: why should the heuristic simplification based on (3.27) lead to some equation610

having a probabilistic interpretation? The RMF framework provides the answer to611

this question: the RMF network is a stochastic dynamical system whose steady-612

state MGF should satisfy (3.28). In other words, the existence of a steady state for613

the RMF network, which is conjectured here, justifies the existence of at least one614

probabilistic solution to (3.28). As stated previously, proving rigorously the existence615

of that steady state consists in establishing the property of propagation of chaos [55]616

in RMF networks, which is beyond the aims of our analysis.617

3.3. Analytical solutions for replica-mean-field models. The rate-con-618

servation equations appearing in the RMF ansatz are first-order ODEs. Hence, char-619

acterizing the stationary state of RMF networks amounts to specifying the unknown620

mean intensities featuring in these differential equations. Intuitively, the mean inten-621

sities must solve a set of self-consistency equations: for each neuron, βi is the output622

firing rate of a neuron subjected to input firing rates βj delivered via synaptic weight623

µij . The goal of this section is twofold: first, we derive such self-consistency equa-624

tions via simple analyticity requirements of the solutions of the differential equations.625

Second, we numerically validate the properties of the RMF framework by comparison626

with the original LGL network or with the classical thermodynamic limit.627

3.3.1. The counting model case. The analytical strategy that we will follow628

for general LGL models is first exemplified on the simplest network, i.e., the counting629

model with K fully connected neurons with homogeneous synaptic weights µ and630

with uniform base rate b. By neuronal exchangeability, the RMF ansatz for the631

counting model (see Definition 3.3) takes the form of a single equation for the PGF632

of C, the number of spikes received by a neuron since the last reset. Then, for any633

β, that equation admits a unique solution G satisfying the normalization condition634

that G(1) = 1, thereby defining a family of candidate PGFs {Gβ}β , parameterized635

by the unknown β. As explained above, the RMF ansatz should have at least one636

solution Gβ which is a PGF. It turns out that, for the counting model, requiring the637

analyticity of the solutions in zero is enough to determine a unique PGF solution to638

the RMF ansatz. Specifically, we show in the following that, given the normalization639

condition G(1) = 1, there is a unique continuous solution to the RMF ansatz and that640

the normalization condition for that solution yields the self-consistency equation for641

This manuscript is for review purposes only.



RMF NEURAL NETWORKS 17

β. Moreover, we are able to show that this equation uniquely specifies β and that the642

corresponding function Gβ is indeed a PGF by explicitly exhibiting the associated643

stationary probability distribution. These results are summarized in the following644

theorem:645

Theorem 3.4. For the counting model, there is a unique integer-valued random646

variable C whose PGF is solution to the RMF ansatz Definition 3.3. Moreover, (i)647

the mean intensity β = b+ µE [C] is the unique solution to:648

β =
µcae−c

γ(a, c)
with a =

(K − 1)β + b

µ
and c =

(K − 1)β

µ
,(3.29)649

where γ denotes the lower incomplete Gamma function, and (ii) the stationary dis-650

tribution of C is given by651

p(n) =


β

µa
=

β

(K − 1)β + b
, if n = 0 ,

cae−c

γ(a, b)

Γ(a+ n+ 1)cn

Γ(a)Γ(n+ 1)
, if n > 0 .

652

(3.30)653

Proof. The unique solution to the first-order differential equation (3.14) that sat-654

isfies the normalization condition G(1) = 1 is655

G(z) =
ec(z−1)

za

(
1 +

βec

µca
(
Γ(a, c)− Γ(a, cz)

))
,(3.31)656

where Γ denotes the upper incomplete Gamma function, i.e., Γ(x, y) =
∫∞
y
tx−1e−t dt,657

and where we have used the auxiliary parameters a and c defined in (3.29). Solutions658

G are analytic on R except possibly in zero, where G generically has an infinite659

discontinuity. Indeed, noting that a > 0, we have the following asymptotic behavior660

when z → 0+:661

G(z) = z−a
(
e−c +

β(Γ(a, c)− Γ(a))

µba

)
+

β

µa
+O (z) .(3.32)662

As probability-generating functions must be analytic in zero, we require the term be-663

tween parentheses to be zero in the above expression, which is equivalent to requiring664

that β solves the leftmost equation of (3.29). Observing that (K − 1)β = c/µ and665

a = c+ b/µ, (3.29) can be rewritten as an equation on c:666

c1−(c+ b
µ )ec γ

(
c+

b

µ
, c

)
= K − 1(3.33)667

Then, applying Lemma 3.5 (see below) with x = b/µ and y = K − 1 shows that668

Equation (3.29) admits a unique solution for b > 0, µ > 0 and K > 0. The result for669

µ = 0, i.e., for independent neurons, is clear: λ = b. For β solving (3.29), the solution670

to (3.14) can be written671

G(z) =
ec(z−1)

za
γ(a, zc)

γ(a, c)
,(3.34)672
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18 F. BACCELLI AND T. TAILLEFUMIER

and repeated differentiations shows that G is the PGF associated to the distribution673

defined over the integers by674

p(n) =
G(n)(0)

n!
=

cae−c

γ(a, b)

cn/n!

a(a+ 1) . . . (a+ n)
=

cae−c

γ(a, b)

Γ(a+ n+ 1)cn

Γ(a)Γ(n+ 1)
,(3.35)675

and for which we have676

p(0) =
β

µa
=

β

(K − 1)β + b
≤ 1 .(3.36)677

The proof of Theorem 3.4 utilizes the following lemma:678

Lemma 3.5. For all x, y ≥ 0, there is a unique positive real c such that679

c1−(x+c)ecγ(x+ c, c) = y ,(3.37)680

where γ denotes the lower incomplete Gamma function.681

Proof. The power series representation of the incomplete Gamma function yields682

f(c) = c1−(x+c)ecγ(x+ c, c) =

∞∑
n=0

cn+1

(x+ c)(x+ c+ 1) . . . (x+ c+ n)
,(3.38)683

where the series converges uniformly in c on all compacts in R+. Denoting the con-684

tinuous summand functions by685

fn(c) =
cn+1

(x+ c)(x+ c+ 1) . . . (x+ c+ n)
,(3.39)686

we observe that fn is differentiable on R∗+ with687

f ′n(c) =
cn
(
n+ 1−

∑n
m=0

c
x+c+m

)
(x+ c)(x+ c+ 1) . . . (x+ c+ n)

> 0 .(3.40)688

Thus, by uniform convergence, f is a strictly increasing continuous function. To689

prove the lemma, we need to show that f is onto R+, i.e. that limc→∞ f(c) = ∞690

since f(0) = 0. This limit directly follows from the positivity of fn on R+ and from691

the fact that limc→∞ fn(c) = 1 for all n ≥ 0.692

Remark 3.6. The generating function G obtained by solving for µ = 0 and β = b693

G(z) =
b

b+ (K − 1)(1− z)
,(3.41)694

is the PGF of a geometric distribution with parameter (1 + (K − 1)/b)−1, which is695

precisely the law of independent Poissonian arrivals during an exponential waiting696

time, i.e., the law of the spike count of a neuron during the inter-spike period of697

another. In particular, the mean count value is G′(z) = (K − 1)/b, as expected.698

Remark 3.7. While neglecting coupling between neurons, the stationary distribu-699

tion p incorporates self-excitation via interaction-dependent mean intensities and also700

captures the effect of spiking reset. For instance, keeping a − c = b/µ and letting701

a→∞, as in the limit of large K, we have702

bae−b

Γ(a)− Γ(a, b)
=

√
2a

π
+O(1) ,(3.42)703
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which implies an asymptotic scaling law with the network size K for finite synaptic704

weight µ:705

β ∼
√

2Kµβ

π
i.e. β ∼ 2Kµ

π
.(3.43)706

3.3.2. The relaxing model case. The arguments proving Theorem 3.4 for the707

counting-neuron model essentially generalize to the RMF ansatz for heterogeneous708

LGL networks with relaxation (see Definition 3.2), albeit with some caveats. Indeed,709

we show that the RMF ansatz reduces to a set of self-consistency equations by writing710

down that normalization conditions for the set of continuous solutions to the ansatz.711

We also show that continuous solutions are necessarily completely monotone, which712

implies by Bernstein’s theorem [27], that such solutions are indeed MGF for some713

probability distributions. Moreover, utilizing monotonicity arguments, we show that714

Theorem 3.4 implies the existence of a solution β to the obtained set of self-consistency715

equations. The main caveat is that we do not have any direct argument establishing716

the uniqueness of solutions, although we conjecture that uniqueness holds for hetero-717

geneous LGL networks with relaxation. These results are summarized in the following718

theorem, which is proved in Subsection 5.2:719

Theorem 3.8. For all LGL relaxing models, there is a set of independent real ran-720

dom variables {Λi}1≤i≤K whose MGFs {Li}1≤i≤K are solutions to the RMF ansatz721

specified in Definition 3.2 with722

Li(u) = βi

∫ u

−∞
exp

hi(x) +
∑
j 6=i

βjhij(x)

u
v

+ li(v)

 dv ,(3.44)723

where the functions gi, hi, and hij are defined by724

li(x) = τiri

(
e
x
τi − 1

)
, hi(x) = bi

(
τi

(
e
x
τi − 1

)
− x
)
,(3.45)725

hij(x) = τie
−τiµij

(
Ei
(
τiµije

x
τi

)
− Ei (τiµij)

)
− x ,(3.46)726

and where Ei denotes the exponential integral function. In particular, the mean in-727

tensities E [Λi] = βi, 1 ≤ i ≤ k, solve the system of equations728

1

βi
=

∫ 0

−∞
exp

−hi(v)−
∑
j 6=i

βjhij(v) + li(v)

 dv .(3.47)729

730

Remark 3.9. The RMF ansatz for neurons with excitatory random interaction731

weights and random reset values takes the same form as in Definition 3.2:732

−
(

1 +
u

τi

)
L′i(u) + fi(u)Li(u) + gi(u) = 0 .(3.48)733

but with the functions734

fi(u) = −ubi
τi

+
∑
j 6=i

(
1−

∫ ∞
0

euµ dqij(µ)

)
βj ,(3.49)735

gi(u) = βi

∫ ∞
0

eur dqi(r) ,(3.50)736

This manuscript is for review purposes only.



20 F. BACCELLI AND T. TAILLEFUMIER

where qij is the probability measure of synaptic weight µij and qi is the probability737

measure of the reset ri. The above functions fi and gi still satisfy the key properties738

(see Proposition 5.5) establishing Theorem 3.8, which therefore extends straightfor-739

wardly to the case of excitatory random interactions and random reset values.740

Remark 3.10. The system of equations (3.47) can be interpreted probabilistically741

by considering an isolated relaxing-neuron i subjected to independent Poissonian de-742

liveries from other neurons with rate βj . Actually, one can check that the spiking743

activity of such a neuron defines a renewal process with a renewal distribution that744

satisfies745

P [Si > t] = exp

−hi(−t)−∑
j 6=i

βjhij(−t) + li(−t)

 .(3.51)746

Then, the set of self-consistency equations (3.47) follows from writing:747

1

βi
= E [Si] =

∫ ∞
0

P [Si > t] dt .(3.52)748

Remark 3.11. In the absence of relaxation, the inhomogeneous model becomes749

the “counting-synapse model”, for which the stochastic intensities can be written as750

λi(t) = bi +
∑
j 6=i µijCij(t) via the introduction of the processes751

Cij(t) =

∫ t

Ti,0(t)

Nj(ds) , j 6= i ,(3.53)752

which count the number of spikes that a neuron i receives from anther neuron j since753

the last time neuron i spiked. Taking the limit τi →∞ in (3.45) and (3.46) yields to754

the functions gi, hi, and hij for the counting-synapses model755

li(x) = rix , hi(x) = 0 , and hij(x) =
eµijx − 1

µij
− x ,(3.54)756

where the reset value ri coincides with the base rate (ri = bi).757

4. Neuroscience applications. The aim of this section is to illustrate the con-758

crete applications of the RMF approach through a few examples in neuroscience.759

Since the main tool currently used for this class of problems is the TMF limit, we760

first compare the TMF and the RMF models on a few basic network topologies and761

show how the latter outperforms the former. A fundamental difference between the762

TMF and the RMF is then discussed through the analysis of the so-called transfer763

functions of the two models.764

4.1. Numerical comparison with the thermodynamic limit. At the core765

of the RMF approach is the assumption that the dynamics of finite-size LGL networks766

is well-approximated by neurons experiencing independent Poissonian bombardments767

from other neurons. As already mentioned, another possible simplifying assumption768

is that of the classical TMF limit. In the TMF model, one substitutes an individual769

neuron i with a population of M exchangeable neurons with connections weights770

µji/M , and takes the limit of infinite population size M →∞. Propagation of chaos771

holds in the TMF limit [22]. Thus, a neuron within population i experiences neuronal772

interactions via the time-dependent deterministic drive773

αi(t) =
∑
j 6=i

µij

(∫ ∞
0

λpj(t, λ) dλ

)
,(4.1)774
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where pj(t, λ) is the probability distribution of the stochastic intensity λ of a neuron775

within population j at time t. As a result, all neurons become independent in the776

TMF limit, and each time-dependent probability distribution pi satisfy a forward777

Kolmogorov equation that can be written778

∂ipi(t, λi) = −∂λi
[(

bi − λi
τi

+ αi(t)

)
pi(t, λi)

]
−779

λipi(t, λi) +

(∫ ∞
0

λpi(t, λ) dλ

)
δri(λi) .(4.2)780

In the above right-hand side, the first term represents the deterministic drift incorpo-781

rating relaxation and interaction contributions, the second term is a death term due782

to neuronal spiking with rate λi, and the last term represents a birth term localized783

at reset value ri with population-level rate
∫∞
0
λpi(t, λ) dλ. Introducing the variables784

si = bi + τi
∑
j 6=i µijβj , the stationary distribution pi is thus solution to the equation785

∂λi

[(
si − λi
τi

)
p(λi)

]
+ λipi(λi) = βiδri(λi) .(4.3)786

The stationary distribution solving the above equation can be expressed in closed787

form as788

pi(λ) =
eτi(λ−ri)

|si − λ|

∣∣∣∣ si − λsi − ri

∣∣∣∣τisiβiτi 1[ri,si](λ) ,(4.4)789

where 1[ri,si] is the indicator function of the interval [ri, si]. In turn, the MGF asso-790

ciated to the stationary distribution pi can be evaluated as791

Li(u) =

∫
euλpi(λ) dλ =

βiτie
siu+(si−ri)τiγ

(
τisi, (si − ri)(τi + u)

)(
(si − ri)(τi + u)

)τisi ,(4.5)792

from which we deduce the set of TMF self-consistency equations from the normaliza-793

tion conditions Li(0) = 1:794

1

βi
=
τie

(si−ri)τiγ
(
τisi, (si − ri)τi

)(
(si − ri)τi

)τisi .(4.6)795

Observe that the above self-consistency equations closely mirror the form of the set796

of equations (3.47) obtained from the RMF ansatz.797

To explore the formal correspondence between the RMF and TMF frameworks,798

let us consider RMF models in the thermodynamic limit. In considering such a799

limit, our goal is to evidence how TMF models and first-order RMF models differ.800

Applying the RCP to networks where we substitute each neuron with a population of801

M exchangeable neurons yields the following RMF ansatz :802

−
(

1 +
u

τi

)
L′i(u) +

ubi
τi

+
∑
j 6=i

M
(
e
uµij
M − 1

)
βj

Li(u) + βie
uri = 0 .(4.7)803

Taking the thermodynamic limit, one has limM→∞M (exp (uµij/M)− 1) = uµij and804

we obtain the new ansatz805

−
(

1 +
u

τi

)
L′i(u) +

usi
τi
Li(u) + βie

uri = 0 .(4.8)806
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Fig. 1. Recurrent network. RMF models better capture the stationary firing rate of finite
LGN networks than TMF models for unstructured random networks with sparse, large, synaptic
weights. Top row: LGL network of 100 counting-synapse neurons, each receiving spikes from
randomly sampled 50 neurons, via identically uniformly distributed synaptic weights. Bottom row:
LGL network of 100 neurons, each receiving spikes from 5 randomly sampled neurons, via identically
uniformly distributed synaptic weights. Left: Synaptic structure. Middle: Numerical stationary
rates obtained from discrete-event simulations (107 spiking events) and from iterated schemes for
the RMF model and TMF model (20 iterations). Right: Scatter plots comparing the faithfulness of
the TMF model and that of the RMF model.

We refer to the above system of equations as the TMF ansatz. As expected, one807

can check that the MGFs defined by relation (4.5) are solutions to the TMF ansatz.808

Moreover, the difference between TMF models and first-order MGF effectively appears809

to be due to the terms mediating interactions: these terms are exponential in the first-810

order RMF limit, whereas they linearize in the TMF limit.811

Moreover, we present numerical results emphasizing when the first-order RMF812

approach approximates finite LGL networks more faithfully than TMF networks. We813

consider two types of counting-synapse models (see Remark 3.11): unstructured re-814

current networks in Figure 1 and multilayered feedforward networks in Figure 2. For815

each network structure, we numerically evaluate the empirical stationary firing rates816

of finite LGL networks via discrete-event simulations using the Gillespie algorithm817

[31]. Then, we compare these empirical rates with the RMF rates and the TMF818

rates, which are obtained by numerically solving the self-consistency equations (3.47)819

and (4.6), respectively. These solutions are computed via the—empirically uncondi-820

tionally converging— iteration scheme deduced from the self-consistency equations.821

As expected from our discussion of the TMF limit, Figure 1a and Figure 2a show822

that RMF models closely mirror TMF models for LGL networks with weak interac-823

tions. e.g., with µij/bi � 1. Moreover, TMF models, as well as RMF models, are both824

faithful approximations of the corresponding finite LGL networks, which exhibit weak825

correlations by construction. Because of the role played by the interaction-mediating826

terms in the TMF and RMF ansätze, we expect that RMF models become distinct827

from TMF models for network structure involving large synaptic weights, e.g., with828
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Fig. 2. Feedforward network. RMF models better capture the stationary firing rate of finite
LGN networks than TMF models for multilayered feedforward network with sparse, large, synaptic
weights. Top row: LGL network of 10 layers of 40 counting-synapse neurons, each receiving
spikes from 40 randomly sampled neurons from the previous layer (except the driving layer), via
identically uniformly distributed synaptic weights. Bottom row: LGL network of 10 layers of 40
neurons, each receiving spikes from 3 randomly sampled neurons from the previous layer (except
the driving layer), via identically uniformly distributed synaptic weights. Left: Synaptic structure.
Middle: Numerical stationary rates obtained from discrete-event simulations (107 spiking events)
and from iterated schemes for the RMF model and TMF model (20 iterations). Right: Scatter plots
comparing the faithfulness of the TMF model and that of the RMF model.

µij/bi > 1. However, we expect RMF model to be faithful only when the Poisson Hy-829

pothesis is a good modeling assumption, i.e., when spike trains are nearly Poissonian830

and independent across neurons. For large synaptic weights, such a behavior is the831

hallmark of sparsely connected networks. Figure 1b and Figure 2b confirm that RMF832

networks better predict the firing rates of LGL networks with large, sparse, synaptic833

connections. Further numerical simulations reveal that RMF models comparatively834

better capture feedforward networks than recurrent networks (see Table 1). This is835

due to the presence of cycles in the network structure, which promotes correlation and836

gradually invalidates the Poisson Hypothesis [42]. Accounting for networks with large,837

sparse, synaptic connections but strong recurrent structure, e.g., nearest-neighbor lat-838

tice graph, requires to consider higher-order RMF models (see Section 6).839

Table 1
Comparison of the relative errors of the mean firing rates in the TMF limit and in the RMF

limit for different network structures. The RMF limit comparatively better captures the mean firing
rates for LGL networks with large, sparse, synaptic connections.

Network model TMF error RMF error
Complete unstructured < 1% < 1%

Sparse unstructured 5% 2%
Complete feedforward 2% 1%

Sparse feedforward 44% 7%
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Fig. 3. Transfer function. Asymptotic regime of the transfer function F for a neuron with
reset value r = 1, base level b = 1, time constant τ = 1, and receiving spikes from two other neurons.
Top row. Numerical and analytical approximation of the transfer function F for large input rates
with synaptic weights µ1 = µ2 = 1. A purely excitatory LGL network is always stable because
its transfer function grows sublinearly as a function of its input rates. Bottom row. Numerical
and analytical approximation of the transfer function F for large synaptic weights with input rates
β1 = β2 = 1. The transfer function saturates for large synaptic weights showing the non-symmetric
role of synaptic weights and input rates.

4.2. Asymptotic transfer functions. A key quantity determining the behav-840

ior of neural networks is the neuronal rate-transfer function, which relates the output841

stationary rate of a neuron to its stationary input rates and its synaptic weights. For842

instance, neurons modeled via Hawkes processes—which neglect reset mechanisms—843

have rate-transfer functions that depend linearly on the rates of interaction µijβj .844

Such a linear dependence of rate-transfer functions implies that Hawkes neural net-845

works are prone to explosion in the absence of inhibition, and thus fail to admit a846

stationary regime. By contrast, LGL networks are unconditionally stable, indicating847

that the LGL rate-transfer function must grow sublinearly with input rates. Within848

the RMF framework, the rate-transfer function of a neuron i, denoted Fi, is given by849

the self-consistency equations (3.47) and can be expressed as850

Fi(β,µ) =

∫ τi

0

exp

−h̃i(v)−
∑
j 6=i

βj h̃ij(v)

l̃i(v) dv

−1 ,851

where the auxiliary functions h̃ij , h̃i and l̃i are defined as:852

h̃ij(v) =

∫ v

0

1− e−µiju

1− u/τi
du , h̃i(v) =

bi
τi

∫ v

0

u

1− u/τi
du , l̃i(v) =

e−riv

1− v/τi
(4.9)853
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(see Equation 5.53). In Figure 3, we numerically compute the rate-transfer function854

of a neuron subjected to two spiking streams with varying input rates and varying855

synaptic weights. Considering the asymptotic behavior of Fi via the Laplace method856

in the limit of large input rates βj exhibits the sublinearity of Fi. Specifically, observ-857

ing that the function h̃ij admits its minimum over (0, τi) in 0, the Laplace method858

implies that in the limit of large input rates, i.e., for all βj →∞, we have859

Fi(β,µ)−1 ∼ e−h̃i(0)−
∑
j 6=i βj h̃ij(0) l̃i(0)

∫ ∞
0

e−
∑
j 6=i βj h̃

′′
ij(0)v

2/2dv .(4.10)860

The evaluation of the Gaussian integral with h̃′′ij(0) = µij yields the asymptotic861

behavior862

Fi(β,µ) =

(
2

π

∑
j 6=i

µjiβj

)1/2

+ o
(√

β1, . . . ,
√
βK

)
,(4.11)863

showing that LGL rate-transfer functions scale with the square-root of the input rates,864

which is consistent with the reset-enforced unconditional stability of LGL networks.865

Such a sublinear scaling is the same as that of the counting-neuron model because866

relaxation becomes irrelevant at high firing rate, i.e., when interspike intervals become867

shorter than the relaxation time constant τi (see Figure 3).868

Finally, by contrast with Hawkes model—and with LGL neurons in the TMF869

limit—, the rate-transfer function Fi exhibits a distinct nonlinear dependence on the870

synaptic weights at fixed input rates. Indeed, we have871

h̃ij(v) = −
∑
j 6=i

1

µij
+O

(
1/µ2

1, . . . , 1/µ
2
K

)
,(4.12)872

Then, taking the limit µij → ∞ in (4.9) shows that the rate-transfer function Fi873

asymptotically saturates to the upper bound874

β̄i =
e−aab

τiγ(b, a)
with a = τi(bi − ri) and b = τi

bi +
∑
j 6=i

βj

 .(4.13)875

This upper bound simplifies to β̄i = bi +
∑
j 6=i βj when the reset level and the base876

level identical: bi = ri. Finally, accounting for first-order corrections shows that for877

large synaptic weights, we have the scaling878

Fi(β,µ)−1 ∼
∫ τi

0

e
av
τi

+
∑
j 6=i

βj
µij

(
1− v/τi

)b−1
dv = e

∑
j 6=i

βj
µij /β̄i ,(4.14)879

so that the rate-transfer function Fi has the following asymptotic behavior880

Fi(β,µ) = β̄i

1−
∑
j 6=i

βj
µij

+ o (1/µ1, . . . , 1/µK) .(4.15)881

This saturating behavior is a distinct feature of RMF limit models (see Figure 3).882

Informally, in the limit of infinite weights, each spiking input triggers a spiking output883

leading to an effective quasi-linear transfer function. By contrast, in the TMF limit,884

increasing synaptic weight µij is equivalent to increasing input rate βj , so that the885

rate-transfer function diverges in the limit of large synaptic weights. This failure to886

capture saturation in the TMF limit explains why RMF models outperforms TMF887

models for sparse networks with large synaptic weights.888
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5. Proofs. This section contains the proofs of the key results of our RMF com-889

putational framework. Subsection 5.1 contains the Markovian analysis justifying the890

Harris ergodicity of LGL networks and their finite replica versions (Subsection 5.1.1)891

and the derivation of the RMF ansatz (Subsection 5.1.2). Subsection 5.2 proves892

Theorem 3.8 solving the RMF ansatz for the relaxing-neuron model with synaptic893

heterogeneity.894

5.1. Markovian analysis. Establishing Harris ergodicity, as well as deriving895

the RMF ansatz, essentially rely on the Markovian analysis of the infinitesimal gen-896

erators of LGL networks and their finite replica versions.897

5.1.1. Harris ergodicity. To prove Harris ergodicity, it is enough to exhibit a898

regeneration set that is positive recurrent for {Λn}n∈Z, the embedded Markov chain899

of {λ(t)}t∈R, defined as {Λn}n∈Z = {λTn}n∈Z, where Tn denotes the ordered sequence900

of jumps such that almost surely T0 ≤ 0 < T1 and Tn < Tn+1. In [49], Robert and901

Touboul exploit the Poissonian embedding of intensity-based network models [36] to902

show that all compact sets Rλ0 = [0, λ0]K with903

λ0 > max
i

∑
j

µji + bi

 ,(5.1)904

are regeneration sets for {Λn}n∈Z. Briefly, regeneration happens when each neuron905

spikes consecutively and “spontaneously”, i.e., in the base-rate component of the Pois-906

sonian embedding, which is well defined as long as mini inft λi(t) = mini ri > 0. Given907

an initial state Λ0 in Rλ0 , such a sequence of K transitions yields a state ΛK that908

is independent of Λ0, while happening with finite, albeit small, probability. Know-909

ing the regenerative property of compact sets Rλ0
, the Harris ergodicity of {λ(t)}t∈R910

follows from the existence of positive recurrent compact sets under the assumption911

of a non-explosive behavior. The non-explosive nature of the dynamics, as well as912

the positive recurrence of compact sets Rλ0 for large enough λ0, are established by913

verifying the following Foster-Lyapunov drift condition for exponential scale functions914

Vu(λ) = exp (u
∑
i λi):915

Proposition 5.1. For u > 0 and c > 0, there are real numbers d > 0 and l > 0916

such that for all λ0 > l and for all λ in RK+ , we have917

A[Vu](λ) ≤ −cV (λ) + d1Rλ0 (λ) .(5.2)918

Proof. On RK+ , the infinitesimal increment of the scale function Vu satisfies919

A[Vu](λ) =
∑
i

bi − λi
τi

uVu(λ) +
∑
i

(
eu(

∑
j 6=i µji+ri−λi) − 1

)
λiVu(λ) ,(5.3)920

≤

(
u
∑
i

bi
τi

+
1

u

∑
i

eu(
∑
j 6=i µji+ri)−1 −

∑
i

λi

)
Vu(λ) .(5.4)921

where we used the facts that λi ≥ 0 and that maxλ e
−λiuλ = 1/ue for u > 0. Given922

c > 0, the compact set923

Rc =

{
λ ∈ RK+

∣∣ ∑
i

λi ≤ u
∑
i

bi
τi

+
1

u

∑
i

eu(
∑
j 6=i µji+ri)−1 + c

}
(5.5)924
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is such that A[Vu] ≤ −cVu outside Rc. Thus, choosing925

l = u
∑
i

bi
τi

+
1

u

∑
i

eu(
∑
j 6=i µji+ri)−1 + c ,(5.6)926

implies that, for λ0 > l, A[Vu] ≤ −cVu outside of R = [0, λ0]K ⊃ Rc. Moreover, using927

the boundedness of Vu on compact sets to choose928

d = λ0 sup
λ∈R

Vu(λ) <∞ ,(5.7)929

we finally check that A[Vu] ≤ −cVu + d1R on RK+ .930

In [44], Meyn and Tweedie show that the Foster-Lyapunov drift condition of931

Proposition 5.1 has two immediate implications: i) As the functions Vu are positive932

and norm-like, i.e. limλ→∞ Vu(λ) = ∞ for u > 0, Proposition 5.1 directly implies933

that the Markovian dynamics is non-explosive. ii) As the dynamics is non-explosive934

and noting that Vu ≥ 1 on RK+ , a set Rλ0
satisfying Proposition 5.1 is positive recur-935

rent, and for large enough λ0, Rλ0
is a regeneration set as well, implying the Harris936

ergodicity of the Markov chain {λ(t)}t∈R.937

5.1.2. Functional equations for replica models. Following the exact same938

steps as for the proof of Proposition 2.2, Dynkin’s formula applied at stationarity939

allows one to functionally characterize the stationary state of the M -replica model as940

stated in Proposition 3.1.941

Proof of Proposition 3.1. Given a subset of replica indices S ⊂ {1, . . . ,M}, let942

us express the infinitesimal generator A defined by expression (3.3) for the M -replica943

model when acting on the exponential function944

fu(λ) = exp

(
K∑
i=1

∑
m∈S

um,iλm,i

)
.(5.8)945

We obtain the relation946

A[fu](λ) =

K∑
i=1

∑
m∈S

(
bi − λm,i

τi

)
um,ifu(λ)947

+

K∑
i=1

∑
m∈S

1

|Vm,i|
∑
v∈Vm,i

(
e
um,i(ri−λm,i)+

∑
j 6=i,vj∈S

uvj,jµji − 1
)
fu(λ)λm,i948

+

K∑
i=1

∑
m/∈S

1

|Vm,i|
∑
v∈Vm,i

(
e
∑
j 6=i,vj∈S

uvj,jµji − 1
)
fu(λ)λm,i .(5.9)949

By Dynkin’s formula, we have E [A[fu](λ)] = 0 for stationary M -replica dynamics,950

which implies that951

0 =

K∑
i=1

∑
m∈S

(
bium,i
τi

L(u)− um,i
τi

∂um,iL(u)

)
952

+

K∑
i=1

∑
m∈S

1

|Vm,i|
∑
v∈Vm,i

(
e

(
um,iri+

∑
j 6=i,vj∈S

uvj,jµji)
)
− 1

)
∂um,iL(u)

∣∣
um,i=0

953

+

K∑
i=1

∑
m/∈S

1

|Vm,i|
∑
v∈Vm,i

(
e

(∑
j 6=i,vj∈S

uvj,jµji
)
− 1

)
E [λm,ifu(λ)] ,(5.10)954
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where we use the notation955

L(u) = E

[
exp

(
K∑
i=1

∑
m∈S

um,iλm,i

)]
.(5.11)956

Specifying the above relation for S = {1, . . . ,M} yields the PDE of Proposition 3.1.957

In the remaining of this section, we justify relation (3.9) used for heuristically958

deriving the RMF ansatz of Definition 3.2. Considering only the first replica S = {1},959

and denoting u1,j = uj for simplicity, relation (5.10) becomes960

0 =

K∑
i=1

(
biui
τi

L(u)− ui
τi
∂uiL(u)

)
(5.12)961

+

K∑
i=1

1

|Vi,1|
∑
v∈Vi,1

(
e

(∑
j 6=i,vj=1 ujµji+uiri

)
−1

)
∂uiL(u)

∣∣
ui=0

962

+

K∑
i=1

∑
m>1

1

|Vm,i|
∑
v∈Vm,i

(
e

(∑
j 6=i,vj=1 ujµji

)
−1

)
E [λm,ifu(λ)] .963

As v ∈ Vi,1 implies vj 6= 1 for all j 6= i, the exponent in the second term of the964

right-hand side is actually independent of v so that we have:965

0 =

K∑
i=1

(
biui
τi

L(u)− λi
τi
∂uiL(u)

)
(5.13)966

+

K∑
i=1

(euiri − 1) ∂uiL(u)
∣∣
ui=0

967

+

K∑
i=1

∑
m>1

1

|Vm,i|
∑
v∈Vm,i

(
e

(∑
j 6=i,vj=1 ujµji

)
−1

)
E [λm,ifu(λ)] .968

By exchangeability of replicas, the value of the expectation term above is independent969

of m > 1. Then, conditionally to neuron i spiking, let us estimate the sum:970 ∑
m>1

1

|Vm,i|
∑
v∈Vm,i

(
e

(∑
j 6=i,vj=1 ujµji

)
− 1

)
=

(M − 1)Si,2
|Vi,2|

,(5.14)971

where Si,2 collects the terms corresponding to interactions with the second replica:972

Si,2 =
∑
v∈Vi,2

(
e
∑
j 6=i,vj=1 ujµji − 1

)
.(5.15)973

To further estimate Si,2, observe that the set Vi,2 can be partitioned according to how974

many of its components are equal to one. Specifically, we have the partition975

Vi,2 = V
(0)
i,2 ∪ · · · ∪ V

(K−1)
i,2 ,(5.16)976

where the non-overlapping sets V
(k)
i,2 , 0 ≤ k ≤ K − 1, are defined as977

V
(k)
i,2 =

{
v ∈ Vi,2

∣∣ |{vj = 1}| = k
}

with
∣∣∣V (k)
i,2

∣∣∣ =

(
K

k

)
(M − 2)K−1−k .(5.17)978
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Noticing that exp
(∑

j 6=i,vj=1 ujµji

)
− 1 = 0 on V

(0)
i,2 , we have979

Si,2 =

K−1∑
k=1

∑
v∈V (k)

i,2

(
e
∑
j 6=i,vj=1 ujµji − 1

)
980

= (M − 2)K−2
∑
j 6=i

(eujµji − 1) + (M − 2)K−3
∑
j,k 6=i

(
eujµji+ukµki − 1

)
+ . . .(5.18)981

Remembering that |Vm,i| = (M − 1)K−1, we conclude that when M →∞, we have982 ∑
m>1

1

|Vm,i|
∑
v∈Vm,i

(
e

(∑
j 6=i,vj=1 ujµji

)
− 1

)
=
∑
j 6=i

(eujµji − 1) +O(1/M) ,(5.19)983

which justifies relation (3.9) under assumption that the involved expectation terms984

remain bounded when M →∞.985

5.2. Solutions to the RMF ansatz . Solving the RMF ansatz for the relaxing-986

neuron model with synaptic heterogeneity is more involved than for the counting-987

neuron model. This is primarily due to the fact that in the presence of relaxation,988

stochastic intensities have a continuous state space, which requires to consider MGFs989

instead of PGFs. The defining property of MGFs is provided by the criterion of com-990

plete monotonicity. To prove Theorem 3.8, we first show that the RMF ansatz admits991

a unique smooth solution (Subsection 5.2.1). Then, we show that this smooth solu-992

tion is completely monotone (Subsection 5.2.2). Finally, we show that the condition993

of normalization for smooth solutions reduces to the announced set of equations for994

the mean neuronal intensities, which admits at least one solution (Subsection 5.2.3).995

5.2.1. Uniqueness of smooth solutions. Just as for the counting-neuron996

model, there is a unique smooth solution to the type of ODEs intervening in the RMF997

ansatz for the relaxing-neuron model with synaptic heterogeneity. This is stated in998

the following proposition:999

Proposition 5.2. Let f and g be real-valued functions in Cn+1(R) with n ≥ 11000

and τ a positive real number such that f(−τ) > 0, then the ODE1001 (
1 +

u

τ

)
L′(u) + f(u)L(u)− g(u) = 0 ,(5.20)1002

admits a unique continuous solution on R:1003

L(u) =

∫ u

−τ
e−
∫ u
v

f(w)
1+w/τ

dw g(v)

1 + v/τ
dv .(5.21)1004

Moreover, this solution admits a derivative of order n in −τ . In particular, we have1005

L(−τ) = g(−τ)/f(−τ) with L′(−τ) =
(g/f)′(−τ)

1 + (τf(−τ))−1
.(5.22)1006

Proof. i) Uniqueness. As f and g are continuous on R, (3.12) admits continuously1007

differentiable solutions on (−∞,−τ) and (−τ,+∞). Solutions defined on (−τ,+∞)1008

have the generic integral expression1009

L(u) = L0e
−
∫ u
0

f(v)
1+v/τ

dv +

∫ u

0

e−
∫ u
v

f(w)
1+w/τ

dw g(v)

1 + v/τ
dv ,(5.23)1010
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where L0 denotes the arbitrary real value taken by L in zero. The analysis of the above1011

expression shows that solutions on (−τ,+∞) generically have an infinite discontinuity1012

when u→ −τ+. In fact, we evaluate by integration by parts that1013

1

τ

∫ u

0

f(v)

1 + v/τ
dv =

[
f(v) ln

(
1 +

v

τ

)]u
0
−
∫ u

0

f ′(v) ln
(

1 +
v

τ

)
dv ,(5.24)1014

where the integral in the right-hand term has a finite limit when u → −τ+. Thus,1015

the homogeneous part of L exhibits the asymptotic behavior1016

e−
∫ u
0

f(v)
1+v/τ

dv ∼ c
(

1 +
u

τ

)−a
, u→ −τ+(5.25)1017

where we have set the constants1018

a = τf(−τ) > 0 and c = −τ
∫ 0

−τ
f ′(v) ln

(
1 +

v

τ

)
dv ,(5.26)1019

thereby showing that L generically has an infinite discontinuity in −τ . Factorizing1020

the homogeneous part leads to considering L under the form1021

L(u) = e−
∫ u
0

f(v)
1+v/τ

dv

(
L0 +

∫ u

0

e−
∫ 0
v

f(w)
1+w/τ

dw g(v)

1 + v/τ
dv

)
.(5.27)1022

For L to have a finite left-limit in −τ , the term in parentheses in the above expression1023

must vanish when u→ −τ+, which implies that one must choose1024

L0 = lim
u→−τ+

∫ 0

u

e−
∫ 0
v

f(w)
1+w/τ

dw g(v)

1 + v/τ
dv .(5.28)1025

The above limit exists and is finite due to the asymptotic behavior of the integrand1026

e−
∫ 0
v

f(w)
1+w/τ

dw g(v)

1 + v/τ
∼ g(−τ)

c

(
1 +

v

τ

)a−1
,(5.29)1027

where the right-hand term is integrable (a > 0). This shows that a continuous solution1028

to (5.20) must take a unique value L0 in 0 and is therefore uniquely characterized on1029

(−τ,+∞). Moreover, inserting the integral expression for L0 given by (5.27) into1030

(5.23) yields the announced expression (5.21) for that unique solution. Repeating the1031

above analysis on (−∞,−τ) rather than (−τ,+∞) would yield the same expression1032

for the unique solution with a finite right-limit in −τ , showing that there is at most1033

one continuous solution to (5.23) on R.1034

ii) Existence: continuity. It is enough to show that the function L defined on1035

R \ {τ} by (5.21) is continuous in −τ . In order to compute limu→τ L(u), we first use1036

integration by part to obtain the asymptotic behavior of the exponent function in1037

(5.21) when u→ −τ :1038

1

τ

∫ v

u

f(w)

1 + v/τ
dw =

[
f(w) ln

(∣∣∣1 +
w

τ

∣∣∣)]v
u
−
∫ v

u

f ′(w) ln
(∣∣∣1 +

w

τ

∣∣∣) dw ,1039

= f(−τ) ln

(∣∣∣ τ + v

τ + u

∣∣∣)+ o−τ (1) , |τ + v| < |τ + u| .(5.30)1040

Thus we have the equivalence1041

e−
∫ u
v

f(w)
1+w/τ

dw ∼
(
τ + v

τ + u

)a
, 0 <

τ + v

τ + u
< 1 , u→ −τ ,(5.31)1042
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which shows that the sought-after limit can be evaluated as:1043

lim
u→−τ

L(u) = lim
u→−τ

∫ u

−τ

(
τ + v

τ + u

)a
g(v)

1 + v/τ
dv.(5.32)1044

The leading term in the above integral can be further evaluated via integration by1045

part1046 ∫ u

−τ

(
τ + v

τ + u

)a
g(v)

1 + v/τ
dv =

τ

(τ + u)a

∫ τ+u

0

wa−1g(w − τ) dw ,1047

=
τ

(τ + u)a

([
wa

a
g(w − τ)

]τ+u
0

−
∫ τ+u

0

wa

a
g′(w − τ) dw

)
,(5.33)1048

where the integral in the right-hand side is O−τ (τ + u). Taking the limit u→ −τ in1049

the remaining term yields the announced value1050

L(−τ) = lim
u→−τ

∫ u

−τ

(
τ + v

τ + u

)a
g(v)

1 + v/τ
dv = lim

u→−τ

τg(u)

a
=
g(−τ)

f(−τ)
,(5.34)1051

showing that L is continuous on R.1052

iii) Differentiability. Let us first evaluate L′(τ) by Taylor expanding L(u) in −τ1053

to first order. First, by repeated integration by parts, we obtain1054

1

τ

∫ u

0

f(v)

1 + v/τ
dv = f(u) ln

(∣∣∣1 +
u

τ

∣∣∣)−1055

f ′(u)(τ + u)
(

ln
(∣∣∣1 +

u

τ

∣∣∣)− 1
)
− τf ′(0) + F (u) ,(5.35)1056

where the last term F (u) refers to the function continuously differentiable function1057

F (u) =

∫ u

0

f ′′(v)(τ + v)
(

ln
(∣∣∣1 +

v

τ

∣∣∣)− 1
)
dv .(5.36)1058

Noticing that F ′(−τ) = 0, we have F (v)−F (u) = o−τ (τ + u) when |τ + v| < |τ + u|.1059

Moreover, Taylor expanding f and f ′ around −τ yields1060

f(u) ln
(∣∣∣1 +

u

τ

∣∣∣)− f ′(u)(τ + u)
(

ln
(∣∣∣1 +

u

τ

∣∣∣)− 1
)

=1061

f(−τ) ln
(∣∣∣1 +

u

τ

∣∣∣)+ f ′(−τ)(τ + u) + o−τ (τ + u) .(5.37)1062

Thus, when u→ −τ , |τ + v| < |τ + u|, the first-order approximation to the exponent1063

function in (5.21) is1064

−1

τ

∫ u

v

f(v)

1 + v/τ
dv = f(−τ) ln

(∣∣∣ τ + v

τ + u

∣∣∣)+ f ′(−τ)(v − u) + o−τ (τ + u) .(5.38)1065

In turn, to first-order in τ + u, we have the asymptotic behavior for L(u)1066

L(u) =

∫ u

−τ

(
τ + v

τ + u

)a (
1 + f ′(−τ)(v − u)

) g(v)

1 + v/τ
dv + o−τ (τ + u) .(5.39)1067
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To write the above relation as an explicit linear approximation, we split the above1068

expression in three terms that we evaluate separately: L(u) = A(u) + B(u) + C(u).1069

The linear approximation to the first term is obtained by repeated integration by part1070

A(u) =

∫ u

−τ

(
τ + v

τ + u

)a
g(v)

1 + v/τ
dv ,(5.40)1071

=
τg(u)

a
− τg′(u)

a(a+ 1)
(τ + u) + oτ+u(τ + u) ,1072

= L(−τ) +
τg′(−τ)

a+ 1
(τ + u) + oτ+u(τ + u) .1073

while the linear approximations to the remaining terms only requires one integration1074

by part:1075

B(u) = τf ′(−τ)

∫ u

−τ

(
τ + v

τ + u

)a
(τ + u)

g(v)

1 + v/τ
dv ,(5.41)1076

=
τ2f ′(−τ)g(−τ)

a
(τ + u) + oτ+u(τ + u) .1077

1078

C(u) = τf ′(−τ)

∫ u

−τ

(
τ + v

τ + u

)a
(τ + v)

g(v)

1 + v/τ
dv ,(5.42)1079

=
τ2f ′(−τ)g(−τ)

a+ 1
(τ + u) + oτ+u(τ + u) .1080

Remembering that a = τf(−τ), we find the announced limit behavior1081

lim
u→−τ

L(u)− L(−τ)

τ + u
=
τg′(−τ)

a+ 1
− τ2f ′(−τ)g(−τ)

(
1

a
− 1

a+ 1

)
,(5.43)1082

=
a

a+ 1

(
g

f

)′
(−τ) .1083

Derivatives of higher order are obtained via similar, albeit intricate, calculations eval-1084

uating the higher-order Taylor expansions of L(u) around −τ . The maximum order1085

for this expansion is determined by the number of times that integration by part can1086

be performed in step (5.35) and step (5.40). The maximum order is therefore n − 11087

for functions f and g in C(n)(R), which implies that L has a derivative of order n− 11088

in −τ .1089

Remark 5.3. Proposition 5.2 actually holds for equations of the form1090

h(u+ τ)L′(u) + f(u)L(u)− g(u) = 0 ,(5.44)1091

where h is continuously differentiable with a single root: h(0) = 0, h′(0) > 0. Knowing1092

continuous differentiability, the value1093

L′(−τ)(u+ τ) =
(g/f)

′
(−τ)

1 + h′(0)/f(−τ)
,(5.45)1094

directly follows from linearizing (5.44) and from using L(−τ) = g(−τ)/f(−τ).1095
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5.2.2. Complete monotonicity of the smooth solution. The following lem-1096

ma will be the key to prove the complete monotonicity of the smooth solutions to the1097

RMF ansatz.1098

Lemma 5.4. Let f and g be real-valued functions in C2(R) such that f > 0, g > 0,1099

and f ′ < 0, g′ > 0 on an open interval I containing −τ . Then, the unique continuous1100

solution L to (5.20) is strictly increasing on I.1101

Proof. If g > 0 and f > 0, expression (5.21) directly shows that L remains positive1102

on R. As L is solution to (5.44) and f > 0 on I, L is increasing on I if and only if1103

L ≥ g/f on (−∞,−τ) ∩ I and L(u) ≤ g(u)/f(u) on (−τ,∞) ∩ I. Let us show that1104

L is below the curve of g/f on (−τ,∞) ∩ I by contradiction. First, observe that by1105

Proposition 5.2, we know that the curve of L intersects the curve of g/f in −τ with1106

a slope L′(−τ) < (g/f)′(−τ). In particular, L < g/f on the interval (−τ,−τ + ε) for1107

small enough ε > 0. Suppose there is u in I, u > −τ + ε, such that L(u) > g/f(u),1108

then the set1109

V = {v ∈ I ∩ (−τ + ε,+∞) |L(v) = g(v)/f(v)}(5.46)1110

is non empty by continuity of L and g/f . Consider the first hitting time: v0 = inf V >1111

−τ . By definition, L remains below g/f on (−τ, v0) and we must have L′(v0) = 0.1112

However, f/g is a strictly increasing function when f > 0, g > 0, and f ′ < 0, g′ > 0.1113

Thus, (f/g)′(v0) > 0 = L′(v0) while (f/g)(v0) = L(v0), which implies that f/g < L1114

in the left vicinity of v0. This contradicts the definition of v0 as the first-hitting time.1115

The same argument applies on (−τ,∞) to show that the curve of L above the curve1116

of g/f on (−∞,−τ).1117

We are now in a position to prove a result of monotonicity for derivatives of1118

all orders via a simple recurrence argument, which is equivalent to the property of1119

complete monotonicity.1120

Proposition 5.5. Let f and g be real-valued functions in C∞(R) such that for1121

all u < 0, we have f(u) > 0, g(u) > 0 and f (n)(u) < 0, g(n)(u) > 0 for all n in N∗.1122

Then, the unique continuous solution L to (5.20) is such that for all n in N and for1123

all u < 0, we have L(n)(u) > 0.1124

Proof. i) The first step is to exhibit a system of first-order ODEs satisfied by the1125

(n+1)-th order derivatives L(n+1). Proposition 5.2 directly implies that the continuous1126

solution L to Equation (5.20) is in C∞(R) on R if f and g are in C∞(R). Repeated1127

differentiation of (5.20) on R \ {−τ} shows that for all n in N, the functions L(n+1)1128

satisfy1129 (
1 +

u

τ

)
L(n+1)(u) + fn(u)L(n)(u)− gn(u) = 0 ,(5.47)1130

where we have fn = n/τ + f and where the function gn is defined by recurrence as1131

gn(u) = g′n−1(u)− f ′(u)L(n−1)(u) , with g0 = g(u) .(5.48)1132

Proceeding inductively, we obtain an explicit expression for gn:1133

gn(u) = g(n)(u)−
n−1∑
k=0

dk

duk

(
f ′(u)L(n−1−k)(u)

)
,(5.49)1134
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which can by further simplified via the Leibniz formula and the hockey-stick identity1135

gn(u) = g(n)(u)−
n−1∑
k=0

k∑
l=0

(
k

l

)
f (l+1)(u)L(n−1−l)(u) ,(5.50)1136

= g(n)(u)−
n−1∑
l=0

(
n

l + 1

)
f (l+1)(u)L(n−1−l)(u) .(5.51)1137

ii) The proof then proceeds by recurrence on the order of the derivative. We know1138

that the unique continuous solution to (5.20) is a positive function: L > 0. Suppose1139

that L(k) > 0, for 1 ≤ k ≤ n, i.e., that the functions L(k), 0 ≤ k ≤ n− 1, are positive1140

increasing functions on R−. Formula (5.50) shows that gn is also positive increasing:1141

gn > 0 and g′n > 0. Then, observing that fn and gn in (5.44) satisfy the hypotheses of1142

Lemma 5.4 with I = (−∞, 0), we conclude that L(n) is positive increasing on (−∞, 0),1143

i.e. L(n+1) > 0. By recurrence, we deduce that derivatives of all order are positive:1144

L(n) > 0 on (−∞, 0) for all n in N.1145

5.2.3. Existence of a solution to the RMF ansatz . The proof of Theo-1146

rem 3.8 mirrors the argument of the proof of Theorem 3.4, except that one has to1147

check that i) the smooth solutions of the RMF ansatz are indeed MGFs and ii) that1148

the self-consistency equations for the mean neuronal intensities admit at least one1149

solution.1150

Proof of Theorem 3.8. i) Necessary conditions on the mean intensities. Given1151

positive mean intensities βj > 0, 1 ≤ j ≤ K, each equation of the system (3.12) can1152

be written under the same form as (5.21) by introducing the functions1153

fi(u) = −ubi
τi

+
∑
j 6=i

(1− euµij )βj and gi(u) = βie
uri ,(5.52)1154

which belong to C∞(R) with fi(−τi) > 0. Thus, by Proposition 5.2, each equation of1155

the system (3.12) admits the unique continuous solution on R1156

Li(u) =

∫ u

−τi
e
−
∫ u
v

fi(w)

1+τi/w
dw gi(v)

1 + v/τi
dv , 1 ≤ j ≤ K ,(5.53)1157

which also belong to C∞(R). Moreover, the functions fi and gi are such that for all1158

u < 0, fi(u) > 0, gi(u) > 0, f
(n)
i (u) < 0 and g

(n)
i (u) > 0 if βj > 0 for 1 ≤ j ≤ K.1159

Thus, by Proposition 5.5, we deduce that the functions Li, 1 ≤ j ≤ K, have strictly1160

positive derivative at all order in (−∞, 0). Together, the above properties state that1161

the functions defined by u 7→ Li(−u) are completely monotone function on (0,∞)1162

[27]. By Bernstein’s theorem on completely monotone functions, u 7→ Li(−u) is the1163

Laplace transform of a positive measure mi defined on the Borel sets of R+, that is:1164

Li(−u) =

∫ ∞
0

e−utdmi(t) .(5.54)1165

In particular, the functions Li are MGFs if and only if the measures mi are probability1166

measure. This is equivalent to imposing that Li(0) = 1, 1 ≤ i ≤ K, which gives the1167

announced system of equations (3.47) for the mean intensities βj . Operating the1168
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change of variables y = τi ln (1 + v/τi) and x = τi ln (1 + w/τi) yields the integral1169

expression1170

Li(u) = βi×1171 ∫ u

−∞
exp

∫ u

y

bi

(
e
x
τi − 1

)
+
∑
j 6=i

(
e
τiµij

(
e
x
τi −1

)
− 1

)
βj dx

eτiri(e yτi −1) dy ,(5.55)1172

which reduces to (3.44) after evaluating the integral exponent, therefore justifying the1173

announced system of equations (3.47) for the mean intensities βj .1174

ii) Existence of mean intensities solutions. In order to show the existence of1175

solutions to the system of equations (3.47), let us consider the map F : RK+ → R
K
+1176

whose components are defined by1177

Fi(β) =

∫ 0

−∞
exp


hi(x)−

∑
j 6=i

βjhij(x)

0

v

+ li(v)

 dv


−1

, 1 ≤ i ≤ K .(5.56)1178

Given β0 in the positive orthant, iterating the map F specifies a sequence {βn}n∈N,1179

βn = F n(β0), whose finite accumulation points are solutions to (3.47). To establish1180

that such accumulation points exist, it is enough to show that the positive sequence1181

{βn}n∈N is bounded. Given β0 in the positive orthant, we show the boundedness of1182

{βn}n∈N by exhibiting a dominating convergent sequence. The first step is to observe1183

that for t ≤ 0, we have:1184

hi(0)− hi(x) + li(x) = τi(ri − bi)
(
ex/τi − 1

)
+ bix ≥ max(bi, ri)x ,(5.57)1185

and consequently, we have1186

Fi(β) ≤

∫ 0

−∞
exp

max(bi, ri)v −
∑
j 6=i

βj

[
hij(x)

]0
v

 dv

−1 def
= F̃i(β) .(5.58)1187

Because of the convexity of the exponential function, the newly introduced function1188

F̃i turns out to be an increasing function of the relaxation time τi, so that we have1189

Fi(β) ≤ lim
τi→∞

F̃i(β) =

∫ 0

−∞
exp

rit+
∑
j 6=i

βj

(
1− etµij
µij

+ t

) dt

−1 .(5.59)1190

Observing that limτi→∞ F̃i(β) is also an increasing function of the parameters µij1191

and ri, we further have1192

Fi(β) ≤

∫ 0

−∞
exp

rt+

(
1− etµ

µ
+ t

)∑
j 6=i

βj

 dt

−1 def
= Gi(β) ,(5.60)1193

where r = maxi ri and µ = maxi,j µij . As expected, evaluating the integral in the1194

above expression for β = β1 yields the equation associated to the counting-neuron1195

model with interaction weight µ and base intensity equal to the reset value r:1196

Gi(β1) =
µcc+xe−c

γ(c+ x, c)

def
= g(β) , with c =

(K − 1)β

µ
and x =

r

µ
.(5.61)1197
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Given β0 in the positive orthant, posit β′0 = (maxi β0,i)1 and consider the two se-1198

quences {βn}n∈N and {β′n}n∈N obtained by iterating the maps F and G on β0 and1199

β′0, respectively: βn = F n(β0) and β′n = Gn(β′0). If βn ≤ β′n, then βn+1 = F (βn) ≤1200

F (β′n) ≤ G(β′n) = β′n+1, where we have used the fact that for all 1 ≤ i ≤ K, Fi is1201

increasing with respect to βj , 1 ≤ j ≤ K:1202

∂βjFi(β) = −
∫ 0

−∞ hij(t)e
(hi(t)+

∑
j 6=i βjhij(t)) dt

Fi(β)2
≥ 0 .(5.62)1203

Thus, as β0 ≤ β′0 by construction, the sequence {β′n}n∈N dominates {βn}n∈N with re-1204

spect to the product order in RK . It remains to show to {β′n}n∈N is convergent, which1205

is equivalent to show that the one dimensional sequence {β′n}n∈N, β′n = gn(maxi β0,i),1206

is convergent. To justify this point, it is enough to check that the sequence {β′n}n∈N1207

is bounded, as Lemma 3.5 shows that there is a unique fixed point solution to1208

β = g(β) = µcae−c/γ(a, c). Introducing the rescaled sequence {cn}n∈N defined by1209

cn = (K − 1)β′n/µ, notice that cn+1 = h(cn) with1210

h(c) = (K − 1)
cc+xe−c

γ(c+ x, c)
.(5.63)1211

From the power expansion of the incomplete gamma function, we have1212

h(c) = (K − 1)

∑
n≥0

cn

(x+ c)(x+ c+ 1) . . . (x+ c+ n)

−11213

≤ (K − 1)

(
K−1∑
n=0

cn

(x+ c)(x+ c+ 1) . . . (x+ c+ n)

)−1
=
K − 1

K
c+ o∞(c) .(5.64)1214

showing that h(c) < c for large enough c. This implies that {cn}n∈N is a bounded1215

sequence, and so is {β′n}n∈N.1216

6. Future directions. Our results were obtained and discussed for purely exci-1217

tatory LGL networks and limited to first-order RMF ansatz. We would like to stress1218

that, in principle, our approach to reduce RMF ansätze to a set of self-consistency1219

equations—founded on imposing the condition of analyticity on the solutions to the1220

ansätze—can be generalized to models including inhibition and higher-order statistics.1221

In the context of second-order RMF, the RCP can be applied to the joint MGF of1222

pairs of neurons rather than single neurons. Our replica framework can be extended1223

to simplify the representation of the point processes that feed this pair through some1224

appropriate extension of the Poisson Hypothesis. The interactions between the two1225

neurons of the pair are however described in an exact way. An important complication1226

of our replica approach for higher order is that the RMF ansatz consists in a system1227

of PDEs rather than a system of ODEs. However, the PDEs associated with the1228

RCP for second-order RMF model can be solved using singularity-analysis techniques1229

generalizing those described in this work. This line of thought is essential to represent,1230

e.g., the wave phenomena present in cyclic networks, which limits the applicability1231

of first-order RMF networks. Second-order RMF networks are expected to bring1232

essential new features absent from order one. They are most probably the least1233

complex networks within the RMF class allowing one to capture correlation effects.1234

They also seem to provide the least complex networks that are not fundamentally1235

time irreversible, i.e., with a positive production of entropy.1236
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Another important extension is to account for networks supporting both exci-1237

tatory and inhibitory interactions within our RMF framework. Including inhibitory1238

interactions within a point-process framework requires to consider nonlinear mod-1239

els of synaptic integration, whereby stochastic intensities can remain non-negative in1240

spite of inhibitory inputs. There are several possible nonlinear models which are bio-1241

physically relevant, each yielding distinct functional characterizations of their RMF1242

stationary state. Considering these nonlinear RMF networks in toy models shows that1243

singularity-analysis techniques are still applicable to networks with mixed excitation1244

and inhibition. However, the presence of inhibition fundamentally alters the nature of1245

the singularity featuring in the non-physical solutions to the RMF ansatz. Generaliz-1246

ing our analysis to singularities that are more involved than infinite discontinuities is1247

the key challenge to include inhibition within our framework. Importantly, we have1248

numerical evidence that networks with inhibition have RMF versions that admit sev-1249

eral stable solutions. We intend to utilize these multistable RMF networks to probe1250

the metastable behavior of the finite-size networks that share the same neural basic1251

structure.1252

The above computational questions will be explored in companion papers. A1253

more fundamental question remains to prove the propagation of chaos in finite-replica1254

models, which is supported by simulations and is the central conjecture of this work.1255
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