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The firing activity of intracellularly stimulated neurons in cortical slices
has been demonstrated to be profoundly affected by the temporal struc-
ture of the injected current (Mainen & Sejnowski, 1995). This suggests
that the timing features of the neural response may be controlled as much
by its own biophysical characteristics as by how a neuron is wired within
a circuit. Modeling studies have shown that the interplay between inter-
nal noise and the fluctuations of the driving input controls the reliability
and the precision of neuronal spiking (Cecchi et al., 2000; Tiesinga, 2002;
Fellous, Rudolph, Destexhe, & Sejnowski, 2003). In order to investigate
this interplay, we focus on the stochastic leaky integrate-and-fire neu-
ron and identify the Hölder exponent H of the integrated input as the
key mathematical property dictating the regime of firing of a single-unit
neuron. We have recently provided numerical evidence (Taillefumier &
Magnasco, 2013) for the existence of a phase transition when H becomes
less than the statistical Hölder exponent associated with internal gaussian
white noise (H = 1/2). Here we describe the theoretical and numerical
framework devised for the study of a neuron that is periodically driven by
frozen noisy inputs with exponent H > 0. In doing so, we account for the
existence of a transition between two regimes of firing when H = 1/2, and
we show that spiking times have a continuous density when the Hölder
exponent satisfies H > 1/2. The transition at H = 1/2 formally separates
rate codes, for which the neural firing probability varies smoothly, from
temporal codes, for which the neuron fires at sharply defined times re-
gardless of the intensity of internal noise.
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1 Introduction

The dynamics of spike generation within an assembly of neurons underlies
neural coding, which is defined as the mapping of behaviorally relevant
sensory information onto spatiotemporal spiking patterns (Rieke, Warland,
de Ruyter van Steveninck, & Bialek, 1999; Dayan & Abbott, 2001). Account-
ing for the observed variability of neural responses to identical stimuli,
neural noise plays a crucial role in shaping the propagation of information
through neural circuits (Faisal, Selen, & Wolpert, 2008). Conceptually, such
noise is internal or external (Bressloff, 2010). Internal noise translates the
inherent stochasticity of the molecular mechanisms that underpin the elec-
trical activity of neurons and agglomerate the effects of thermal noise and
stochastic genetic expression. Sources of internal noise noticeably include
random ion channel gating events (White, Rubinstein, & Kay, 2000; Dorval
& White, 2005) and random synaptic failure (Dobrunz & Stevens, 1997).
External noise is the by-product of the spontaneous activity of surround-
ing neurons and summarizes the constant bombardment that a neuron
undergoes when embedded in an assembly (Fellous, Rudolph, Destexhe,
& Sejnowski, 2003). Thus, external noise can be thought of as an activity-
dependent perturbation that superimposes itself onto the internal noise,
and to first approximation, both noises appear as a nuisance to the faith-
ful transmission of neural information (London, Roth, Beeren, Hausser, &
Latham, 2010).

At the single-unit level, the complex interplay between internal and ex-
ternal noise is best exemplified by considering the experiment of Mainen
and Sejnowski (1995), which complemented earlier results by Bryant and
Segundo (1976). In Mainen and Sejnowski’s (1995) study the spiking ac-
tivity of a neuron is recorded while it is repeatedly injected with a steady
current. In response to each stimulation, the neuron emits a train of spikes
that tends to start with a fixed delay from the onset of the injection and
stabilizes at a fixed given firing rate. Over time, the spiking times gradu-
ally desynchronize, as if random perturbations were added independently
to each interspike interval. Thus, internal noise appears to be a nuisance
resulting from the fluctuation of the cellular machinery, ultimately limiting
the ability of spike timing to convey information.

However, if the cell is injected with the same steady input perturbed
by a succession of many transient pulses, the neuron no longer fires this
coarsely. Instead, it repeatedly produces precise patterns of firing that are
closely locked to the time-varying input. In other words, what appears as
transient random external fluctuations leads to a reliable precise neural
response. To emphasize that, despite being seemingly random, the input is
actually a controlled input that drives the neuron’s activity; it is referred
to as frozen noise (Haas & White, 2002). It is important to realize that due
to the stochasticity of neural populations, the overall synaptic input that a
neuron integrates is very much akin to such frozen-noise traces.
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Mainen and Sejnowski’s (1995) experiment shows that the firing pattern
of a single unit differs profoundly according to the nature of its input. In
particular, it demonstrates that the concept of reliability and precision in the
neural response cannot be considered intrinsic to a neuron but has to be seen
as message dependent. We recall that the notion of reliability measures the
reproducibility of a firing pattern in response to stereotypical stimulations,
whereas the notion of spiking precision quantifies the temporal variability
of spiking events that encode for equivalent stimuli features (Bair & Koch,
1996; Berry, Warland, & Meister, 1997). It has been shown that spiking
precision is a function of the input for virtually all spike-generating mech-
anisms (Cecchi et al., 2000), even if the reliability of the neural response
is left unchanged across trials (Reich, Victor, Knight, Ozaki, & Kaplan,
1997).

It is in the context of this complex message dependence that noise at the
population level appears more than a mere nuisance. In principle, different
regimes of synchrony within cortical circuits can yield seemingly random,
yet precise, spiking patterns (Butts et al., 2007; Stevens & Zador, 1998). If the
statistics of these patterns is such that they integrate into a highly fluctuating
input, neural integration at the single unit level can propagate temporal pre-
cision in the face of internal noise and thus promote temporal coding. This
point is consistent with the view that noise can cause synchrony, provided
that the perturbations fed in different neurons are correlated (Rosenblum,
Pikovsky, & Kurths, 1996; Galán, Fourcaud-Trocmé, Ermentrout, & Urban,
2006).

Envisioned as constructive, the role of noise has been termed stochastic
facilitation (McDonnell & Ward, 2011). In this context, assuming that noise is
relevant to information processing, the experimental perturbation of neural
circuits by injection of controlled noise promises to reveal their noise tuning,
which will shed light on their encoding strategies at the population level.
However, as Poggio and Marr (1977) pointed out, such an inquiry requires
a prior solid computational hypothesis, thus identifying the need for a
neural stochastic theory that can accommodate controlled perturbation by
fluctuating input. Here, we set up a theoretical and numerical framework
that will allow us to characterize the behavior of a well-known neuron
model in response to the injection of frozen noise input, with the explicit
inclusion of internal noise.

1.1. Stochastic Leaky Integrate-and-Fire Model and First-Passage
Time. To study the role of noise in shaping neural activity, we give a sam-
ple path description of a neuron’s stochastic dynamics that preserves the
essential mechanistic principle of neural integration. Specifically, we con-
sider a stochastic integrate-and-fire neuron whose membrane potential is
modeled as a continuous random process X. Subjected to internal noise, the
fluctuating membrane potential X obeys a stochastic differential equation
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of the form

dXt = F(Xt, I(t), t) dt + σ (Xt, I(t), t)dWt . (1.1)

In this equation, dW denotes gaussian white noise as the formal time deriva-
tive of the canonical Wiener process W. The response function F drives the
deterministic dynamics of the membrane potential, while the diffusion co-
efficient σ quantifies the internal noise perturbations. The functions F and
σ define the integration rules of a neuron through their dependence on
the time-varying input I. From a mathematical standpoint, equation 1.1 de-
scribes the subthreshold dynamics of the membrane potential as a Markov
diffusion process (Stroock & Varadhan, 2006).

We consider that a neuron fires an action potential whenever the noisy
integration of the input causes the membrane potential X to exceed a cer-
tain voltage threshold l. Thus, spiking events are formally defined as first-
passage times,

τ = inf
{
t | Xt > l, X0 = r

}
, (1.2)

where we have assumed that the neuron resets to value r after the previ-
ous spiking event at time t = 0. Although it is simply stated, this spike-
generating mechanism is more complex than it seems. Specifically, defined
as first-passage times (Redner, 2007), spike occurrences are isolated discrete
events that depend on the continuous history of the fluctuating input.

Hereafter, we adopt the stochastic leaky integrate-and-fire (sLIF) model
(Ricciardi & Sato, 1988; Lansky & Ditlevsen, 2008; Ricciardi & Sacerdote,
1979; Burkitt, 2006a, 2006b) as the fundamental encoding scheme that trans-
forms neural input into a train of spikes. For simplicity, we restrain our study
to the current-based model, where the neuronal input takes the form of an
injected current. Thus the subthreshold membrane potential is modeled as
an Ornstein-Uhlenbeck (OU) process (Uhlenbeck & Ornstein, 1930) satis-
fying equation 1.1 with F(Xt, I(t), t) = −αXt + I(t) and σ (Xt, I(t), t) = σ ,
where the leak term α is the inverse of the relaxation time of the neu-
ron. The nonlinearity of the model lies entirely in the membrane reset rule
that is implemented after reaching the threshold l and triggering a spiking
event.

1.2. Hölder Regularity and Phase Transition. In order to motivate our
adoption of the sLIF model, We proceed to a thought experiment that ide-
alizes the experiment of Mainen and Sejnowski (1995). This will allow us
to gain some insight into the message dependence of neural reliability and
precision. We consider in Figure 1 the response of an sLIF neuron to the re-
peated injection of a steady current with or without a frozen white noise of
the same intensity as the internal noise. As opposed to the case of a constant
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Figure 1: (a) sLIF neuron injected with a steady current. Top: Each black trace
represents a membrane potential’s trajectory; the gray curve is the drift resulting
from the integration of the input current. Bottom: The drift is subtracted from the
voltage traces to reveal the canonical OU sample paths. (b) sLIF neuron injected
with a steady current and a frozen-noise current. Top: The drift is a frozen
Orstein-Uhlenbeck path added to the original exponential rise; spiking times
tend to cluster in specific time regions. Bottom: Subtracting the drift shows that
the contribution of the frozen noise can be encapsulated in terms of a fluctuating
effective barrier.

input, it appears that spikes tend to cluster in well-defined time regions in
the presence of frozen noise, with enhanced temporal precision.

For a moment, let us admit that the problem can be formulated in term of
an effective barrier, defined as the constant spiking threshold minus the drift
resulting from the integration of the input (see Figure 1). It then becomes
clear that reliable spiking occurs when the effective barrier intercepts many
trajectories that have not yet hit the boundary, whereas precise spiking
occurs when the effective barrier falls steeply in a transient fashion. In
other words, the spiking regime of the sLIF neuron is dictated by the local
regularity of the effective barrier that results from the integration of the
frozen noise.

Mathematically, we identify the feature of the effective barrier that con-
trols the firing activity of our externally driven neuron as its Hölder regu-
larity. If we hold ourselves to frozen noise, the degree of regularity of the
effective barrier is statistically summarized by the Hölder exponent. This
exponent denoted H, also called the roughness exponent, takes values in
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Figure 2: Link between scale invariance and Hölder regularity. We represent
the asymptotic behavior of the curve LH in the limit of vanishing timescale.
In the case of H-continuous functions, the Hölder exponent indicates the local
scaling exponent of the graph of LH: if a dilation in time d is accompanied by a
dilation in voltage dH, the statistics of the voltage trace is left unchanged.

(0, 1) and quantifies the strength of the input fluctuation through vanishing
scales.1 For an OU process U, which is asymptotically identical to a Wiener
process, it takes the value H = 1/2 since the fluctuation scales as δU ∼ √

δt.
Postponing a formal definition of H, it is possible to intuitively capture
the meaning of the Hölder exponent for stationary curves through the no-
tion of statistical scale invariance, as shown in Figure 2. Concretely, the
Hölder exponent characterizes how infinitesimal fluctuations add up con-
structively or destructively to generate complex curves, whose statistical
profile is typical for a given value H

Consequently, we design our theoretical and numerical framework from
the perspective of studying the distribution of spike timing that arises from
the injection of frozen noise with different Hölder regularity. In that respect,
although the Hölder regularity is a property of the effective barrier, for
conciseness, we will call H the Hölder exponent of the frozen noise and
will say that the noise is Hölder singular. In a related paper (Taillefumier &
Magnasco, 2013), we demonstrate the existence of two regimes of spiking for
sLIF neurons that have constant mean firing rate. On one hand, if the frozen
injected noise is less singular than the internal neuronal noise (H > 1/2),
the temporal precision of the driven neuron is classically prescribed by the

1For H = 0, the curve becomes discontinuous, whereas for H = 1, the curve becomes
piecewise differentiable.
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continuous probability density of spiking times (continuous spiking mode).
On the other hand, if the frozen noise is more singular than the internal noise
(H < 1/2), the neuron exhibits exquisite temporal precision in the sense
that the probability density becomes singular, almost everywhere either
zero or infinity (singular spiking mode). This observation appears to be
generalizable to all current-based integrate-and-fire neurons and becomes
the signature of the competition between drift and diffusive components
of the dynamics, which shapes the voltage sample path in the vicinity of
the threshold. However, our interest here is to set up the theoretical and
numerical framework required for the study of this phenomenon through
the following case study.

1.3. Study of the Firing Rate of a Periodically Driven Neuron. In the
spirit of Mainen and Sejnowski (1995) and following previous work (Fellous
et al. 2001; Thomas, Tiesinga, Fellous, & Sejnowski, 2003), we study in depth
the sLIF encoding scheme when periodically driven by frozen noisy input.
First, under mild hypotheses on the nature of the input, we show that spikes
happen as generated through an ergodic Markov chain (Häggström, 2002;
Norris, 1998; Stewart, 2009), whose Markov transition kernels are naturally
deduced from first-passage distributions. Next, we construct a family of
frozen noise currents IH with Hölder singularity prescribed by a Hölder
exponent H satisfying 0 < H < 1. This family of injected currents is actually
constructed by gradually altering a frozen gaussian white noise (H = 1/2)

that has the same amplitude as the internal noise of the neuron. In dealing
with these highly irregular inputs IH, we resort to Monte Carlo simulations
(Metropolis & Ulam, 1949; Robert & Casella, 2004) to infer the instantaneous
firing rates by generating extremely long histories of spiking times, with
exquisite precision. Bearing in mind that these results are discussed at
length in a related paper (Taillefumier & Magnasco, 2013), we then briefly
report the effect of varying the noise singularity on the qualitative nature of
the distribution of spiking times. Finally, we investigate when the spiking
time admits a density function, a property that is readily assumed in most
applications but can very well fail to hold true.

2. First-Passage Markov Chain

When an sLIF neuron is driven by an input, it produces a train of spikes that
comes under a statistical flavor. If the input is periodic, the train of spikes
can be divided such that the spiking events are lined up according to their
phases within an input cycle. This procedure generates the raster plot of
the neuron’s response to the input. Given a binning interval, computing the
fraction of time that a spike occurs in each bin yields the normalized peris-
timulus histogram. Loosely speaking, a peak in the peristimulus histogram
indicates that the neuron spikes reliably at a given phase; the sharpness of
this peak measures the precision of the spike timing.
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To study the relation between driving input and peristimulus histogram,
we formalize the mechanism by which an sLIF neuron generates spiking
phases. For such a neuron, the train of spikes elicited by a periodic input
results from a succession of first-passage problems to an effective barrier.
The phases of the spiking events, as opposed to their absolute times, consti-
tute the sample path of a discrete inhomogeneous Markov chain. Then for
asymptotically large numbers of input cycles, the peristimulus histogram
is defined as the fraction of time the Markov chain spends in the bin phase
intervals.

From a mathematical standpoint, the peristimulus histogram that arises
from a cyclic input is well defined only if the corresponding Markov chain is
ergodic. Indeed, the property of ergodicity ensures that the fraction of time
the Markov chain spends in any bin interval is independent of the initial
condition of the Markov chain. From a numerical standpoint, ergodicity is
also a desired property for the approximate simulation of the Markov chain
and, thus, for the estimation of the peristimulus histogram. For a sLIF neu-
ron with smooth input, verifying the ergodic property is straightforward.
However, such a verification is not obvious for highly fluctuating input,
such as frozen noise inputs.

In this section, we first show that the neural activity of a driven sLIF
neuron is advantageously formulated in terms of an effective barrier. Based
on this formulation, we define the generation of spiking phases by a driven
sLIF neuron as a Markov chain, referred to as the first-passage Markov chain
(FPMC). We then establish the ergodic property of the FPMC for effective
barriers with a positive Hölder exponent.

2.1. Effective Barrier Formulation. Before defining the FPMC, we show
that the spiking activity of a sLIF neuron driven by an external input can
be formulated in term of first-passage problems of standard OU processes
to a fluctuating barrier. This formulation allows us to clearly separate the
contribution of external noise, which is entirely captured by the barrier
profile, from the contribution of internal noise, which drives the fluctuations
of the OU processes.

In the sLIF model, the subthreshold dynamics of the membrane po-
tential X is described by the inhomogeneous linear stochastic differential
equation,

dXt = −αXt dt + σ dWt + dC(t), α > 0. (2.1)

At the cost of rescaling X and C by σ , we restrain ourselves to the case
σ = 1. In equation 2.1, we write the increment due to the input current
I(t) as the infinitesimal variation I(t) dt = dC(t) of a load function C(t). We
characterize the regularity of the load function by its Hölder exponent H.
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When H > 0, we say that C is H-continuous. Formally, the Hölder exponent
H is defined in (0, 1) as the infinimum of the local Hölder exponents Ht:

H = inf
t

Ht < ∞, Ht = lim
δ→0+

sup
|t−s|≤δ

|C(t) − C(s)|
|t − s|h . (2.2)

The exponent H(t) quantifies the scaling of the local fluctuations �δC(t) =
C(t + δ) − C(t) with respect to the observation timescale δ. The smaller the
Hölder exponent, the larger the fluctuations �δC in the limit of vanishing
timescale δ, which justifies considering H as a proxy measure for the degree
of singularity of I. As frozen noise, I is generally not bounded in any time
intervals and can be represented only as a generalized function. We consider
only frozen noise input I whose time integral defines an H-continuous load
function C with 0 < H < 1. In particular, C is nowhere differentiable, and we
say that the corresponding frozen noise input I, as a generalized function, is
H-singular. Notice that by contrast, if the input current I remains bounded,
the corresponding load function C is H-continuous with H = 1.

Because the nonlinearity of the sLIF model lies entirely in the spike
generation and subsequent reset, we can separately integrate input and
noise between spikes. Thus we can transform the first-passage problem,
equation 1.2, with constant threshold l and fluctuating input I into a first-
passage problem without driving forces to a fluctuating effective barrier. To
see this, suppose that when a sLIF neuron is injected by an input current
I, it emits a spike labeled by i at time ti > 0. After reaching the spiking
threshold l, the neuron’s membrane potential X resets to a value r < l. To
solve equation 2.1 with initial condition X+

ti
= r, we write X = Ui + li, where

we separate the stochastic part Ui, the OU process obtained for I = 0, and the
deterministic part li arising from the integration of the input I(t) = dC(t)/dt:

Ui
t = r e−α(t−ti ) +

∫ t

ti

e−α(t−s) dWs, (2.3)

li(t)=
∫ t

ti

e−α(t−s) dC(s). (2.4)

Observe that the decomposition of X = Ui + li is in agreement with the reset
rule Xt+

i
= r since we have Ui

t+
i

= r and li(t+
i ) = 0. To determine the next

spiking time, ti+1 can be cast in terms of a first-passage problem for the
process Ui with the effective barrier t �→ Li(t) = l − li(t):

τi+1 = inf{t > ti |Ui
t > Li(t),Ui

t+
i

= r}. (2.5)

Therefore, a train of spikes t0 < t1 < · · · < tn is determined by solving
consecutively the first-passage problems, equation 2.5, for independent
processes Ui. Note that by definition, the barriers Li depend on the spike
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Figure 3: Sequence of first-passage times for a sLIF neuron with constant in-
jected current. (a) In the direct representation, each neuron spikes when its
membrane voltage, modeled as an upward-drifted OU process, hits the firing
threshold. (b) In the effective representation with a naive reset rule, the deter-
ministic drift is subtracted from the same voltage traces so that the sketched
traces are canonical OU trajectories. (c) In the effective representation with a
modified reset rule, the effective barrier becomes continuous as a convolution
of the injected current. When we simulate a sLIF neuron that is cyclically injected
with a current I comprising a frozen noise component, the effective barrier will
have a fluctuating profile. Moreover, we will consider the sLIF in steady state,
as if many input cycles have already occurred; this implies that the effect of
the steady component of the input will be to lower the threshold by a constant
value as opposed to the exponential decay observed in panel c.

timing ti and that due to the reset rule, the barriers Li may not agree at
spiking times: Li−1(t−

i ) 	= Li(t+
i ) = l.

To completely separate the role of noise and the role of input in a sLIF
neuron, we must eliminate the dependence of the effective barrier Li on
the spiking time ti. Fortunately, the linearity of the dynamics, equation
2.1, allows us to recast the successive first-passage problems, equation 2.5,
in terms of a sequence of first-passage problems for a single continuous
barrier L = L0 = l − l0 (see Figure 3 for a graphical example). To justify this
claim, let us consider the set Si of white noise realizations ω for which the
trajectories t �→ Ui

t (ω) originate from Ui
t+
i

= r and first cross Li after time t:

Si =
{
ω

∣∣∣ τi+1(ω) > t, τi(ω) = ti

}
=

{
ω

∣∣∣Ui
t+
i
(ω) = r, Ui

s(ω) < Li(s), ti < s < t
}
. (2.6)
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Remembering that Li = l − li for all i > 0, we have for s > ti,

{
ω

∣∣Ui
s(ω) < Li(s)

} = {
ω

∣∣Ui
s(ω) + li(s) − li−1(s) < l − li−1(s)

}
(2.7)

= {
ω

∣∣U ′i
s (ω) < Li−1(s)

}
, (2.8)

where U ′i
t = Ui

t + li(t) − li−1(t) can be written for t > ti:

U ′i
t = e−α(t−ti )

(
r −

∫ ti

ti−1

e−α(ti−s)dC(s)

)
+

∫ t

ti

e−α(t−s) dWs. (2.9)

In the above expression, we recognize U ′i
t as the solution of equation 2.1 for

dC = 0, with the new initial condition:

U ′i
ti

+ = r −
∫ ti

ti−1

e−α(ti−s)dC(s) = Li−1(ti) − (l − r). (2.10)

Thus, from equation 2.6, the set Si can be redefined as

Si = {
ω

∣∣U ′i
t+
i
(ω) = Li−1(ti) − (l − r), U ′i

s (ω) < Li−1(s), ti < s < t
}
,

(2.11)

= {
ω

∣∣ τ ′
i+1(ω) > t, τi(ω) = ti

}
, (2.12)

where

τ ′
i+1 = inf{t > ti |U ′i

t > Li−1(t),U ′i
t+
i

= Li−1(ti) − (l − r)}. (2.13)

The equality, equation 2.12, implies that, conditional to τi, the next spik-
ing time is determined as τ ′

i+1 + τi, where τ ′
i+1 is the first-passage time

of a standard OU process U ′i to the effective barrier Li−1, given that
U ′i

ti
+ = Li−1(ti) − (l − r). Notice that the effective barrier Li−1 intervening

in the determination of τ ′
i+1 is now independent of ti. We can iterate our

reasoning for every first-passage problem τ j given τ j−1 with j ≤ i. As a re-
sult, given an initial spiking time t0 = 0, a train of spikes 0 < t1 < · · · < tn
appears as a realization of the sequence of first-passage problems,

τ ′
i+1 = inf{t > τi |U ′i

t > L(t),U ′i
τ+

i
= L(τi) − (l − r)}, (2.14)

where U ′i are standard independent OU processes satisfying the prescribed
initial conditions.
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By implementing the new reset rules U ′i
t+
i

= L(ti) − (l − r), we are able to
describe the spiking activity of a driven sLIF neuron in terms of first-passage
problems to a single continuous effective barrier L. In this picture, the barrier
L fully integrates the input, while the internal noise drives the standard
OU processes U ′

i . We will adopt this formulation in terms of the effective
barrier L to numerically simulate a sLIF neuron that is repeatedly injected
with the same current. When we gloss over the treatment of the neuron’s
initial condition, the introduction of such a formulation greatly simplifies
the simulation of consecutive first-passage times. Instead of integrating the
input after each reset ti to form the barriers Li, we just have to compute the
barrier L once and for all, and simulate first passages with the OU processes
U ′

i and the new reset rule U ′i
t+
i

= L(ti) − (l − r).

2.2. Continuous-Time Inhomogeneous Markov Chain. Thanks to the
effective-barrier formulation, we can formalize the spike-generating mech-
anism of a sLIF neuron in the framework of Markov chains. Thus, we con-
sider periodic driving inputs and distinguish spiking events based on their
phases, that is, the fraction of the input cycle that has elapsed at the time
of the spike emission. The theory of Markov chains is the natural setting
to define the notion of peristimulus histograms as a probability measure,
which in turn can be approximated by a simple numerical scheme. Because
of the fundamental part played by the first-passage problem, we refer to
the Markov chain generating spiking phases of sLIF neurons as the first-
passage Markov chain (FPMC). Unfortunately, the singular nature of the
frozen noise inputs requires to define the FPMC in a rather formal fashion.

Before specifying the FPMC, let us recall that in a typical experiment,
the spiking activity of a neuron is recorded in response to repeated pre-
sentations of the same stimulus. We idealize this situation by studying the
distribution of spiking events when an input, possibly with a frozen noise
component, cyclically forces a sLIF neuron with period T. For simplicity,
we take the period T as our unit of time, so that T = 1. In this way, the
phase of a spike occurring at time t is simply given by φ = π(t) = t − �t�,
where �t� is the integer part of t. Mathematically speaking, the phase map
π identifies the phase space [0, 1) with the circle S = R/Z. To avoid discon-
tinuity effects, we consider an input for which the effective barrier already
discussed satisfies L(1) = L(0). Reasoning in steady state, this supposes we
choose an input current I(t) = Ic + In(t) with a constant component Ic and a
noisy component In(t), giving rise to a load function C(t) = Cc + Cn(t) with

∫ 1

0
e−α(1−s) dCn(s) = L(1) − L(0) = 0. (2.15)

Such currents are easily obtained. Given an arbitrary integrable input I
with associated load function C, the new input current t �→ I′(t) = I(t) −
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(
L(1) − L(0)

)
eα(1−t) gives rise to a load function L′ with L′(1) = L′(0). The

transformation I �→ I′ is only one of many ways to alter an input current
in order to satisfy relation 2.15, and we will use another transformation
for the purpose of simulating the spiking activity of a sLIF neuron. Notice
that in the steady regime, the only effect of a constant current injection Ic
is to lower the effective spiking threshold by �l = Ic/α. Then property 2.15
allows us to extend the definition of L on the positive half line R

+ to form a
continuous periodic effective barrier by setting L(t) = L(π(t)), where π is
the phase map. Given a periodic barrier L, the successive spiking times of
the sLIF neuron form the sequence of random times {τi} defined in equation
2.14. Moreover, the periodicity and the continuity of L guarantee an infinite
sequence of such spikes.

The spiking times of the sLIF neuron, projected in the phase space as
{φi = π(τi)}, define the FPMC. To specify this Markov chain, we must de-
termine its transition kernel by answering the following question: Knowing
that the sLIF neuron generates a spike with a given phase, what is the prob-
ability law of the next spiking phase? This demands that we first consider
the probability of spike timing for the periodic effective boundary L and
then to “wrap” that probability on the phase-space S. Specifically, given a
spiking time s, say in [0, 1), let us consider the first passage time τs of an
OU process starting at Us = L(s) − (l − r) to the barrier L. Because L is a
continuous function, it is known that the random variable τs admits a con-
tinuous nondecreasing cumulative distribution function Fs : [s,∞) → [0, 1]
(Lehmann, 2002). We then characterize the law of τs as the probability mea-
sure ks defined over the intervals Ia,b ⊂ [s,∞), s < a < b by

ks(Ia,b) = Fs(b) − Fs(a). (2.16)

Notice that as F is continuous, the measure F does not have Dirac masses,
and it does not matter whether the end points of the interval are included.
To define the phase measure κψ from the time measure ks with ψ = π(s), we
need to recognize the sets of S that play the same role as the intervals Ia,b in
defining ks. As the phase-space S has the topology of a circle, these sets are
easily identified as the arcs Aα,β running from phase α to phase β . The only
added complication is due to the fact that arcs are oriented, meaning that
Aα,β 	= Aβ,α . Then for any spiking phase ψ , 0 ≤ ψ < 1, the phase measure
kψ is entirely specified by

κψ (A(α,β)) = kψ

(
π−1(A(α,β)) ∩ [ψ,+∞)

)
, (2.17)

where we recall that π is the phase map.
For any time s, the cumulative function Fs is continuous and Fs(t) →

1 at least exponentially when t → ∞. This implies that the cumulative
function φ �→ Fψ (φ) = κψ (A(ψ,φ)) is also continuous for any phase ψ and
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the measures κψ have no Dirac masses. However, the measures κψ need
not admit a density function, that is, a Lebesgue measurable function h(ψ),
such that κψ (dφ) = hψ (φ) dψ . Indeed, there exist measures with continuous
cumulative functions but no density with respect to Lebesgue measure. An
example of such measures arises from uniformly distributing a unit mass
over the triadic Cantor set (Mandelbrot, 1982). The resulting measure has
no density because it is supported on a set of a zero Lebesgue measure but
its cumulative function, the well-known “Devil’s staircase,” is continuous.

In any case, the collection of measures κ = {κψ } forms a transition ker-
nel κ on the phase-space S, which specifies the probability law of the
next spiking phase conditionally to the last spiking phase. Mathematically
speaking, given an initial probability measure μ0 on S, the transition ker-
nel κ defines the FPMC as a continuous-state, discrete-time Markov chain
(Häggström, 2002; Norris, 1998; Stewart, 2009). This FPMC, denoted by
T = {T0, T1, . . . , Tn, . . .}, induces a probability P on the phase sequences
φ0, φ1 . . . φn according to

∀n ∈ N, P(dφn, . . . , dφ0) = κφn−1
(dφn) . . . κφ0

(dφ1)μ0(dφ0). (2.18)

2.3. Ergodicity of the Markov Chain. In the context of Markov chains,
the peristimulus histogram can be defined as the distribution of spiking
phases of a cyclically driven sLIF neuron, that is, as a probability measure
μ. For this definition to be unambiguous, we require that the distribution
of spiking phases be independent of the initial spiking phase φ0 so that, we
associate a unique probability measure μ with each input I. Practically, this
ensures that the normalized instantaneous firing rate and the probability
of spiking phase coincide. Formally, establishing the identification of the
spiking rate with the probability of spiking phases amounts to proving that
the Markov chain T is ergodic. After defining the property of ergodicity,
we show that the FPMC T with H-continuous periodic load function C is
indeed ergodic.

Let us first recall that a distribution μ is invariant by the Markov chain
T if it satisfies

μ(dφ) =
∫ 1

0
κψ (dφ)μ(dψ), (2.19)

so that if Tn is distributed according to μ, so is Tn+1. When there exists a
unique such measure μ, for any initial distribution μ0 and any arc set A of
spiking phases in S,

lim
N→∞

1
N

N−1∑
n=0

1A(Tn) = μ(A), 1A(φ) =
{

1 if φ ∈ A
0 if φ /∈ A

, (2.20)
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and the Markov chain is said to be ergodic. Simply stated, the fraction of
time that the Markov chain spends in A tends toward the measure of A
under μ. Therefore, in the limit of an infinite number of spike observations,
the normalized instantaneous firing rate tends to the unique measure μ.

We now show that the Markov chain T is ergodic for H-continuous
barriers.

The phase space of T , identified with the circle S, is compact. As a result,
to prove the existence of invariant measures for T , it is enough to show that
T has the strong Feller property (Hernández-Lerma & Lasserre, 2003). The
Markov chain T has the strong Feller property if, for all arc sets A ⊂ S,

φn → φ ∈ S, ⇒ κφn
(A) → κφ(A). (2.21)

The strong Feller property specifies that if two identical sLIF neurons spike
respectively at phases φ and ψ , then when ψ asymptotically approaches
φ, the probability that the first neuron later spikes with a phase in a given
phase arc A becomes the same as for the other neuron. In other words, close
initial conditions entail similar probability laws for the occurrence of the
next spiking events.

To establish the uniqueness of the invariant measure μ, it is enough to
show that the Markov chain T has the irreducibility property (Hernández-
Lerma & Lasserre, 2003). The Markov chainT has the irreducibility property
if, for all arc sets A ⊂ S,

∃ φ ∈ S, κφ(A) > 0 ⇒ ∀ ψ0 ∈ S, ∃ n ∈ N, {ψn} ∈ S
n,

κψn
∗ · · · ∗ κψ1

∗ κψ0
(A) > 0, (2.22)

where ∗ denotes the convolution operation. The irreducibility property
states that if one spiking phase is achievable for a given starting phase, it is
attainable for any starting phase after a finite number of spiking steps. The
previous fact follows from an intuitive observation about spiking times: if
one trajectory starting at t has a nonzero probability of hitting a barrier in a
given time region, we can easily convince ourselves that another trajectory
starting at any s prior to t has a nonzero probability of being close to the
reset value in t and, from there, to unfold as a trajectory that has been reset
in t. When this statement is adapted for spiking phases, a caveat is that
because of the wrapping operation, one cannot tell whether a spiking phase
is produced by a spiking time that is reached after one or many repetitions
of the periodic stimulus. However, this caveat is no obstacle to establish
the irreducibility property for spiking phases. Actually, the Markov chain
T has the stronger property that any phase arc can be reached with finite
probability after one spiking step: for all arc sets A ⊂ S,

∃ φ ∈ S, κφ(A) > 0 ⇒ ∀ψ ∈ S, κψ (A) > 0. (2.23)
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We deduce more rigorously in the appendix the strong Feller property
and the irreducibility property from considerations about the first-passage
time problem. Essentially these properties hold for our FPMC for two rea-
sons: the continuity of the barrier, which ensures the continuity of the
transition kernels in a broad sense, and the reset rule, which constrains
the membrane potential to be reset away from the barrier, thus avoiding
pathological situations such as immediate absorption.

3. Monte Carlo Numerical Framework

We have formally described the generation of spiking phases by a sLIF
neuron in terms of the ergodic FPMC T . This has enabled us to define the
peristimulus histogram (i.e., the normalized instantaneous firing rate), as
the unique invariant measure μ of T . We now intend to characterize the
effect of the input current’s H-singularity on the measure μ. To achieve this
goal, we devise an efficient numerical scheme to simulate the production of
spiking phases by T . Specifically, we approximate the FPMC T with another
ergodic FPMC T N for an effective barrier LN that is a simpler, approximate
version of the effective barrier L.

In practice, we construct a multiresolution sequence of barrier functions
{LN} that interpolate L on the dyadic points DN = {k2−N | 0 ≤ k < 2N}. Such
a construction guarantees that LN converges toward L for increasing N,
when the interpolation mesh goes to zero.2 The approximating sequence
{LN} defines a sequence of ergodic FPMCs T N with transition kernels κN

ψ and
invariant measures μN. Given an initial spiking phase ψ and for increasingly
precise approximations of L, we easily convince ourselves that κN

ψ (A), the
probability that T N generates the next spiking phase φ in the arc set A ⊂ S,
converges toward the probability kψ (A) associated with T . This implies that
for increasingly large N, the invariant probability μN converges toward the
probability μ (Karr, 1975), thus justifying our simple numerical scheme.

In this section, we account for a Monte Carlo method to numerically
simulate the FPMC T N. We first recall the pathwise construction of the
linear diffusion processes, which encompass the OU process, as the limit
of a finite-dimensional multiresolution approximation scheme. We then
construct a finite-dimensional representation of our driving current that
is adapted to the sLIF integration scheme while allowing us to control
the Hölder regularity of the resulting effective barrier. We finally depict
the principles of a probabilistic dichotomic search algorithm (Taillefumier
& Magnasco, 2010) that computes efficiently and accurately first-passage
times in the case of rough boundaries.

2As L is H-continuous with H > 0, the convergence LN(φ) → L(φ) is uniform with
respect to spiking phase φ and exponential in N.
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3.1. Finite-Dimensional Pathwise Representations. In view of speci-
fying simple, approximate barriers LN, we first recall that a linear diffusion
process, such as the OU process U, can be expanded in a well-chosen basis
of functions to form a discrete representation. This is generally achieved by
writing U as a convergent series of random functions,

U = lim
N→∞

UN with UN =
N∑

n=0

fn · n, (3.1)

where the fn are deterministic functions and the n are independent and
identically distributed random variables. The convergence of the series
shall be understood as “almost sure” in the sense that although there are
realizations of the random coefficients n for which the series diverges, the
set of such coefficients has probability measure zero.

The Lévy-Cesielski construction (Lévy, 1948) of the Wiener process W
on [0, 1] provides an example of discrete representation for a continuous
stochastic process. The construction proceeds recursively by defining finite-
dimensional processes WN as linear interpolations of the Wiener process on
the dyadic points DN. In this case, the coefficients n are gaussian inde-
pendent and the elements fn are called Schauder elements and denoted sn,k:
s0,0(t) = t, and for all n > 0,

sn,k(t) =

⎧⎪⎪⎨
⎪⎪⎩

2
n−1

2 (t − k2−n+1), k2−n+1 ≤ t ≤ (2k+1)2−n,

2
n−1

2 ((k+1)2−n+1 − t), (2k+1)2−n ≤ t ≤ (k+1)2−n+1,

0, otherwise.

(3.2)

Interestingly, the Schauder elements are obtained by time-dependent inte-
gration of the Haar basis elements, which constitute a complete orthonormal
system in L2(0, 1): h0,0(t) = 1 and hn,k(t), where for all n > 0,

hn,k(t) =

⎧⎪⎪⎨
⎪⎪⎩

2
n−1

2 , k2−n+1 ≤ t ≤ (2k+1)2−n,

−2
n−1

2 , (2k+1)2−n ≤ t ≤ (k+1)2−n+1,

0, otherwise.

(3.3)

It is possible to generalize the Lévy-Cesielski construction to OU pro-
cesses. This requires identifying finite-dimensional interpolations of a pro-
cess with conditional expectations (Taillefumier & Touboul, 2011). More
precisely, the finite-dimensional processes UN are defined as the expec-
tations of U conditionally to Ut∈DN

, which may be written as UN(t) =
E[Ut |Uk2−N , 0 ≤ k < 2N]. Considering these processes leads to the definition
of a new Schauder basis of continuous functions sn,k for the OU process.
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Figure 4: Lévy-Cesielski construction to the OU process. (Left) The elements
of the basis sn,k are represented for each rank n with 0≤n<6. (Right) The
corresponding conditional averages Un = E

[
U |Uk2−nT , 0 ≤ k < 2n

]
of the OU

process are shown for a given noise realization. Notice that the compact supports
of sn,k exhibit a dyadic nested structure.

Instead of giving the analytical expression of sn,k, we represent the first
basis elements in Figure 4 where we also depict the principle of the Lévy-
Cesielski construction. Observe that the basis elements sn,k, which are com-
pactly supported on Sn,k = [k2−n+1, (k + 1)2−n+1], quickly tend toward the
Wiener process Schauder elements in the limit of vanishing scale.
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We can use the above generalization of the Lévy-Cesielski construction
to specify finite-dimensional approximations IN of the input current I such
that the corresponding effective barriers LN interpolate L on the dyadic
points DN. This is made possible by the existence of a basis of functions
hn,k that plays the same role for the OU process as the Haar system for the
Wiener process. Such Haar-like functions hn,k are derived from the Schauder
elements sn,k through hn,k = s′

n,k − αsn,k, where s′
n,k is the time derivative of

sn,k and α the leak coefficient. As a result, the Schauder elements sn,k can be
recovered by leaky time integration of the Haar-like functions hn,k. Impor-
tantly, the Haar-like functions hn,k constitute a complete orthonormal basis
of L2(0, 1). Then, expanding an input current I on the Haar-like functions
hn,k yields finite-dimensional approximations of I that are adapted to the
leaky-integration scheme. Actually, for any input current I, the leaky time
integration of the finite-dimensional approximation,

IN(t) =
∑

0≤n<N

∑
0≤k<2n−1

hn,k(t)
∫ 1

0
I(s)hn,k(s) ds, (3.4)

gives rise to barrier LN that interpolates L on the dyadic points DN. Observ-
ing that the periodic condition LN(0) = LN(T ) = l is satisfied by setting the
coefficient of s0,0 to zero, we propose using the Schauder basis elements
sn,k and the Haar-like functions hn,k to construct simple, finite-dimensional
approximations to L and I, respectively.

3.2. Family of Hölder Singular Currents. We have seen that the Lévy-
Cesielski construction provides a convenient scheme to build simple, finite-
dimensional approximations of the current I and its associated barrier L. We
now show that the use of the Schauder basis elements allows us to construct
I such that the barrier L has the prescribed Hölder regularity H. To see this,
we need to realize that the local Hölder regularity of the effective barrier
L is entirely captured by the scaling of the coefficients appearing in the
expansion of L on the Schauder basis.

For example, suppose the input current is a realization of gaussian white
noise I(t) = Ẇ(ω). The leaky time integration of the current I gives rise to a
barrier L that is the sample path of an OU bridge process, defined as an OU
process that is conditioned on its end value. In particular, L is H-continuous
of exponent 1/2. For this reason, we denote an input current with a frozen
gaussian white noise component as I1/2 and the corresponding effective
barrier as L1/2. Moreover, we denote the coefficients of sn,k in the expansion
of the barrier over the Schauder basis elements by

ξ
1/2
n,k =

∫ 1

0
I(s)hn,k(s) ds. (3.5)
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By construction, the coefficients ξ
1/2
n,k are an independent realization of cen-

tered gaussian variables with unit variance.
Can we modify the coefficient ξ

1/2
n,k to build a version of L with arbitrary

Hölder exponent H? To positively answer this question, we need to use a
well-known result of Daoudi, Lévy Véhel, and Meyer (1998) that rigorously
relates the local Hölder exponent of a function to the asymptotic behavior
of the coefficients of its decomposition in the Schauder basis. The only com-
plication is that in dealing with the coefficient ξ

1/2
n,k associated with a frozen

gaussian white noise component, we are actually considering realizations of
independent gaussian variables. Then, because of the probabilistic nature of
ξ

1/2
n,k , statements about Hölder regularity hold only almost surely. However,

this is not a relevant limitation for our purpose, and Daoudi et al.’s (1998)
results directly entail that for all H, 0 < H < 1, the barriers LH defined as

LH(t) = l −
∑
0≤n

∑
0≤k<2n−1

sn,k(t) · ξH
n,k, ξH

n,k = 2n(H−1/2) ξn,k (3.6)

are precisely almost surely H-continuous (Taillefumier & Touboul, 2011).
Moreover, the application H �→ LH(ξ ) defined from (0, 1) to the set of
periodic continuous functions C(S) is a continuous mapping for the
L∞-norm. Therefore, we can continuously (in the L∞-norm) control the
asymptotic Hölder continuity of the effective barrier driving the activity of
a sLIF neuron by smoothly changing the coefficient ξH

n,k used to construct
the piecewise approximations LH

N .
In order to emphasize the effect of varying the Hölder regularity, we

adopt a slightly modified version of our barriers LH by weighting them
with a continuous function H �→ c(H): L′H = c(H)

(
LH − LH(0)

) + LH(0).
The function c is chosen so that the newly formed barriers cause the neuron
to fire with an overall mean firing rate that remains constant when chang-
ing H. We refer to the FPMC associated with the first-passage time to LH as
T H , and we label all the related quantities, such as the spiking time transi-
tion kernel kH

s or the invariant spiking phase measure μH , with an explicit
mention of H-dependence.

At this point, it is worth mentioning a minor but conceptually impor-
tant caveat of our numerical approach. The construction of the Hölder
singular currents supposes the choice of a dyadic partition to construct the
Schauder basis. Due to the choice of a particular partition, the statistics of the
H-continuous limit curve are not stationary in time except when H = 1/2.
Rigorously stationary H-continuous curves can be constructed as almost
sure realizations of the fractional Wiener process. However, we favor our
construction because of its computational convenience.

3.3. Probabilistic Dichotomic-Search Algorithm. Using a well-chosen
Schauder basis of functions, we are able to construct finite-dimensional
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approximations of a barrier L that has been chosen with a prescribed Hölder
exponent H. To estimate the invariant measure μH of the corresponding
FPMC T H , we must generate first-passage times of an OU process for a
fluctuating barrier with varying initial conditions. The law of these first-
passage times defines the transition kernels kH

s , which depends on a par-
ticular initial condition prescribed by the timing s of the preceding spike.
In that respect, the need for simulating a continuum of transition kernels
precludes any attempt to tabulate their probability laws. Besides, probabil-
ity distributions of passage times are known analytically only for the most
trivial situations, such as a Wiener process first crossing affine boundaries.
Thus, for our problem, first-passage times must be computed numerically.

When the concern is the sLIF model, numerical integration through the
discretization of the Volterra equation is often advocated to directly com-
pute the density of first-passage times (Paninski, Haith, & Szirtes, 2008;
Ahmadian, Pillow, & Paninski, 2010). Nevertheless, this otherwise very fast
method fails to produce a convergent scheme for nondifferentiable bound-
aries when the distribution of passage times can become singular. To treat
the case of a nondifferentiable barrier, we must estimate the distribution of
spiking events by Monte Carlo methods, which consist in numerically sim-
ulating many sample paths of the process until it first crosses the boundary.
Such an approach traditionally carries both practical and theoretical diffi-
culties, whether focusing on the computational cost of the method or the
accuracy of the returned times (Platen, 1999; Honeycutt, 1992; Bouleau &
Lépingle, 1994).

To ensure computational efficacy with controlled accuracy, we use a
stochastic dichotomic-search algorithm for the first-passage times of an OU
process to a rough boundary. We refer to Taillefumier and Magnasco (2010)
for a detailed account of the algorithm. Here, we recall just the essential
tenets of the method. When first-passage times are being generated by the
Monte Carlo method, the computational cost is set by the resolution with
which the sample paths of the underlying process are simulated. For the
OU process, the Lévy-Cesielski construction offers a recursive scheme that
exactly simulates sample paths to any desired level of resolution. Because
we are interested only in the first-passage time, the process may be path-
wise simulated at high resolution only in regions where a first-passage
time is likely, that is, when the process is close to the boundary (Gaines &
Lyons, 1997; Römisch & Winkler, 2006). We implement such an adaptive
exploration of sample paths through a dichotomic refining procedure that
exploits the recursive scheme of the Lévy-Cesielski construction (Taillefu-
mier & Magnasco, 2010).

For being probabilistic in nature, our algorithm can return erroneous
estimates for first-passage times. This happens when our method does not
refine the sample path of the OU process in a region where a first passage
does indeed occur. In such cases, it always produces approximate cross-
ing times that are not first-passage times but later crossings. However, the
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probability of occurrences of such errors can be tightly controlled. Specif-
ically, our algorithm is designed not to search for first passages in time
intervals where the probability of such crossings is known to be less than
a parameter value ε > 0, where ε can be set very small, typically of order
10−20.

4. Competition Between External and Internal Noise

Using the theoretical and computational framework developed above, we
can investigate numerically the peristimulus histogram of a sLIF neuron in
response to an input current that comprises a frozen-noise component. In
Taillefumier and Magnasco (2013), we exhibit the existence of a transition
between a regime where the normalized peristimulus histogram of spiking
phases is a continuous density function and a regime where it becomes
singular.

The existence of these two regimes is the signature of the competition
between the internal noise and the frozen external noise that may result
from the integration of background activity. In particular, the Hölder sin-
gularity H of the injected frozen noise is the order parameter controlling
the transition, which happens precisely when it becomes the same as the
Hölder exponent of the internal noise H = 1/2.

In this section, we briefly describe the phase transition occurring for
input current with Hölder singularity exponent H = 1/2. Then we give
a heuristic explanation of the phenomenon based on pathwise properties
of the subthreshold voltage dynamics. Finally, we rigorously demonstrate
that the distribution of spiking phase admits a continuous density when
H > 1/2.

4.1. Numerical Evidence of a Phase Transition. We simulate the sta-
tionary measures μH corresponding to a family of H-continuous barriers
LH over a period T = 1 s. The sLIF model is characterized by the following
parameters: the leak constant α (with relaxation time 1/α), the diffusion
coefficient σ , and the threshold value V (the reset is set to v = 0). Here, we
follow Gerstner and Kistler (2002) and set these parameters to 1/α = 10 ms,
σ = 5 mV, and l = 50 mV. The current IH includes a suprathreshold steady
component that drives the effective barrier close to the mean value of the
neuron’s voltage and a frozen-noise perturbation (taken with the same am-
plitude as the intrinsic noise for H = 1/2 ). Additionally, we constrain IH
to be such that the average firing rate of the neuron is held constant at
5 Hz. Thus, the stationary measures μH are sampled temporally with the
same statistical power. As previously stated, this constraint is satisfied by
modulating the amplitude of the injected noise with a continuous function
H �→ c(H). This treatment increases the amplitude of the noise with larger
H (i.e, for smoother barriers), so that over the time course of one period
T, the barriers LH can be seen as sample paths of processes with similar
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variance. This approach is numerically correct only as long as the mean
spiking interval (here 0.2 s) is larger than the typical fluctuations of the
barriers and as long as we operate below the timescale matching regime
(Shimokawa, Pakdaman, & Sato, 1999).

In order to better connect our simulations to experimental situations, we
represent our results as raster plots. In Figure 5, we draw the raster plots
made of 5000 spikes for six different H-continuous barriers, on as many
panels (panels a through f). Below each raster plot, we represent the in-
stantaneous firing rate of the sLIF neuron over an input cycle. Above each
raster plot, we picture the barrier that has elicited the spiking activity of
the sLIF neuron. Observe that if all of the barriers exhibit similar ampli-
tudes of fluctuation, the smoothing of the barriers with larger values of H
is accompanied by the formation of a few isolated downward peaks. Ac-
cordingly, the larger the Hölder exponent is, the higher the spike reliability
is at large scale, as shown by the well-individualized band of firing on the
raster plots for H > 1/2. In Figures 6 and 7, we represent raster plots in
the exact same fashion, except that the panels depict the magnified regions
of low spike reliability framed in Figures 5 and 6, respectively. Notice that
the barrier is scaled with the same aspect ratio on each panel according to
the scaling of an OU process (H = 1/2). We deliberately choose this type of
scaling to emphasize the “point of view” of a voltage trace exploring the
vicinity of the barrier. Zooming in on H-continuous barriers for H > 1/2
gradually smoothens their profiles, while the same operation for H < 1/2
yields rougher traces. In agreement with this relative smoothing or rough-
ening of the barrier, it is observed that the spike precision, as indicated by
a perfect lining up of spiking events on the raster plot, changes abruptly
when the barriers have the same roughness as the typical voltage trace
(H = 1/2).

In general, defining reliability and precision in the neural response re-
quires pooling trains of spikes elicited by stereotypical stimulations into dif-
ferent patterns with well-individualized spiking events (Fellous, Tiesinga,
Thomas, & Sejnowski, 2004). The reliability of a spiking event is measured
by the fraction of time that the event occurs, while the precision of an indi-
vidual spiking event is quantified by the variance of its timing conditionally
to belonging to a specific pattern (Toups, Fellous, Thomas, Sejnowski, &
Tiesinga, 2011, 2012). When considering our numerical results, we think of
spiking reliability and spiking precision in a rather different way. On the one
hand, if we can identify narrow phase regions that carry most of the spiking
phase statistics, we say that the sLIF neuron spikes reliably. On the other
hand, we say that the sLIF neuron has great temporal precision if spikes
occur only for a restrained set of achievable times within the input cycle.
Bearing this in mind, under the constraint of constant average activity, vary-
ing the degree of singularity of the injected current causes a sLIF neuron to
transition between two regimes: a regime of high spiking reliability but poor
temporal precision for weakly singular input and a regime of poor reliability
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a.

c.

b.

d.

f.e.

Figure 5: Each panel shows the results of the numerical simulation of a sLIF
neuron cyclically driven by an input current IH of period 1 s. The input current
IH includes a constant steady component Ic and a frozen-noise component IH

n
for different Hölder exponents H. In the top row of a panel, we represent the
effective barrier LH that arises from the integration of IH. In the middle row of a
panel, we represent a raster plot made of 5000 spiking phases. In the bottom row
of a panel, we represent the normalized peristimulus histogram in logarithmic
scale for 108 simulated spikes. The period of the stimulus is divided in 210 phase
bins. We denote by fi, 1 ≤ i ≤ 210 the fraction of spikes that occur in bin i and
plot the histogram corresponding to {ln(1 + fi)}i. Note that ln(1 + fi) = 0 if no
spike happens in bin i. (A color version of this figure is available in the online
supplement.)

and exquisite temporal precision for highly singular input. From the mathe-
matical point of view, this transition happens when the effective barrier ex-
hibits the same Hölder exponent as the exponent of the subthreshold voltage
trace.
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Figure 6: Each panel shows the results of the numerical simulation of Figure 5
in a specific region of the phase space representing a period of 32 ms for different
Hölder exponents H. In the top and middle rows of the panels, the effective
profile and the raster plots are obtained by zooming in the framed region in
Figure 5. The effective barrier is zoomed in according to the scale invariance
of the OU process: if time is dilated by d, the voltage is scaled by

√
d. The

raster plots show only a fraction of the spikes represented in Figure 5. In the
bottom row, the period of 32 ms is again divided in 210 phase bins. We denote
by fi, 1 ≤ i ≤ 210 the fraction of spikes that occur in bin i and plot the histogram
corresponding to {ln(1 + fi)}i. (A color version of this figure is available in the
online supplement.)

4.2. Heuristic Pathwise Interpretation. The transition between the two
encoding regimes can be qualitatively explained by pathwise considera-
tions. In that regard, we stress that the effective barrier determines a neu-
ron’s spiking pattern through the strength of its fluctuation and also through
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Figure 7: Each panel shows the results of the numerical simulation of Fig-
ure 6 in a specific region of the phase space representing a period of 1 ms for
different Hölder exponents H. In the top and middle rows of the panels, the
effective profile and the raster plots are obtained by zooming in the framed
region in Figure 6. The effective barrier is zoomed in according to the scale
invariance of the OU process: if time is dilated by d, the voltage is scaled by

√
d.

The raster plots show only a fraction of the spikes represented in Figure 6. In
the bottom row, the period of 1 ms is again divided in 210 phase bins. We denote
by fi, 1 ≤ i ≤ 210 the fraction of spikes that occur in bin i and plot the histogram
corresponding to {ln(1 + fi)}i. (A color version of this figure is available in the
online supplement.)

its Hölder regularity. Actually, if the strength of fluctuations is the domi-
nant effect at a large timescale, the Hölder continuity is always the decisive
property that dictates the distribution of spike timing at a small timescale.
In a first approximation, a voltage trace that is tasked with hitting a
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barrier almost always runs into the accessible downward excursions of the
low-resolution depiction of the barrier. Due to the leak term, this process
of traveling from one major obstacle to another is essentially memoryless.
Yet at a small timescale, the continuous voltage trace bears the memory of
the position it just visited. This memory effect plays a crucial part when the
trace lies in the vicinity of the barrier.

To realize the crucial part of the above memory effect, we must envision
the Hölder exponent as the exponent of the scaling operation that leaves
the profile of a curve statistically invariant. This explains why zooming on
H-continuous barriers with the scale invariance of the OU process (H = 1/2)
causes them to smoothen for H > 1/2 or roughen for H < 1/2. For H < 1/2,
the voltage trace always runs into an easy-to-access downward fluctuation
for H < 1/2. Indeed, such obstacles keep presenting themselves at every
timescale and become increasingly hard to avoid, since they scale with
a lower exponent (higher roughness). Therefore, the voltage trace has to
die on the left flank of one of these obstacles and cannot hit the barrier
in a sheltered region. For barriers that are everywhere rougher than the
typical voltage trace, the barrier’s profile is almost surely entirely sheltered,
causing the distribution of accessible time to be singular. For H > 1/2, the
obstacles become easier to avoid as the timescale of observation gets shorter.
Therefore, as the voltage trace gets closer to hitting the barrier, it increasingly
ignores the obstacles and can reach any part of the curve indiscriminately,
giving rise to a continuous density of spiking times.

Understood as a pathwise phenomenon, the transition from a contin-
uous density for first-passage time to a singular distribution is readily
generalizable to other types of integrate-and-fire neurons. For instance,
if the internal noise is a fractional gaussian noise with Hurst coefficient
H, 0 < H < 1 (Mandelbrot & Ness, 1968), the phase transition of the sLIF
neurons precisely happens for H-continuous barriers. We hypothesize that
such a behavior, being very general in nature, is the signature of a stochastic
integrate-and-fire encoding scheme.

4.3. Integral Equation for the First-Passage Time. Based on heuristic
arguments, we hypothesized that a sLIF neuron has a well-defined firing
rate for frozennoise components that are less singular than the internal
noise. From a theoretical point of view, we wish to show that the spiking
phase of a sLIF neuron has a continuous density function for H-singular
frozen noise with H > 1/2. In order to prove this claim, we first simplify
the formulation of our problem and establish an integral equation for the
putative density function.

A straightforward simplification of the problem follows from the real-
ization that by ergodicity of the FMPC T H , if the kernels κH

φ are continuous
for any spiking phase φ in S, so is the stationary measure μH . Thus, it is
enough to show the continuity of the spiking phase kernel κH

φ , which is itself
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implied by the continuity of the spiking time kernels kH
s defined on [s,∞)

for infinite periodic boundary t �→ L(�t�). A further simplification follows
from the existence of a pathwise mapping of the Ornstein-Uhlenbeck pro-
cess U with reset initial condition Us = L(s) − (l − r) to the standard Wiener
process W with initial condition Ws = 0. This mapping is called the Doob’s
transformation (Wang & Pötzelberger, 2007) and takes the form

Ds[ f ](t) =
√

1 + 2α(t − s) f
(
s + λs(t)

) − Us, (4.1)

where λs is the strictly increasing function

λs(t) = ln
(
1 + 2α(t − s)

)
2α

. (4.2)

Notice that the functional transformation Ds preserves H-continuity. Inci-
dentally, the kernels kH

s of the Markov chain corresponding to LH are equiva-
lently determined as the cumulative distributions of the first-passage times
of W with Ds[L

H] knowing Ws = 0. Thus, we need to show only that the
first-passage time of a Wiener process for a boundary LH with H > 1/2
admits a density.

Considering a Wiener process for a boundary LH with H > 1/2, we pro-
pose to find an integral equation for the putative density of the correspond-
ing first-passage time. Integral equations for the first-passage time naturally
arise from probabilistic arguments. Let us consider the event {Wt > x} for a
continuous barrier LH satisfying x > LH(t). Then the first-passage time τ to
LH necessarily occurs before t, and we can write

P(Wt > x) = E
[
P(Wt > x | τ )

] =
∫ t

0
P(Wt > x | τ = s) dQ(s), (4.3)

where Q denotes the putative first-passage time cumulative function. Be-
cause of the Markovian nature of the Wiener process,3 the probability
P(Wt > x | τ = s) is equal to

P
(
Wt > x |Ws = LH(s)

) = P
(
Wt − Ws > x − LH(s) |Ws = LH(s)

)
, (4.4)

= P
(
Wt−s > x − LH(s)

)
. (4.5)

Differentiating equation 4.3 with respect to x, we end up with

K
(

x√
t

)
=

∫ t

0
K

(
x − LH(s)√

t − s

)
dQ(s), (4.6)

3This is due to the strong Markov property of the Wiener process.
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where K denotes the Heat kernel. Importantly, as long as LH is H-continuous
with H > 1/2, we have

lim
τ→t−

LH(t) − LH(τ )√
t − τ

= 0. (4.7)

This warrants taking x → LH(t) by superior value in equation 4.6, thus ob-
taining an integral equation (Park & Paranjape, 1974; Park & Schuurmann,
1976):

K
(

LH(t)√
t

)
=

∫ t

0
K

(
LH(t) − LH(s)√

t − s

)
q(s) ds. (4.8)

which dates back to original work from Siegert (1951). Notice that we
plugged dQ(s) = q(s) ds in equation 4.8 to obtain the desired integral equa-
tion for the putative density function q of first-passage time.

4.4. Continuity of the Density for Hölder Exponent H > 1/2. We are
now in a position to prove that as a solution to equation 4.8 the first-
passage density q is a continuous function for a barrier LH with H > 1/2.
The demonstration of this fact is quite technical and we present only a
summary of the main points (see Cannon, 1984, for details).

First, let us observe that the integral equation, 4.8, is of the Volterra
type, which comes in two flavors: equations of the first kind and of the
second kind (Linz, 1985). To ensure the existence and uniqueness of a solu-
tion to the equations of the second kind, we have the following powerful
result:

Theorem 1 (adapted from Courant & Hilbert, 1962; Tricomi, 1985). The linear
Volterra equation of the second kind,

g(t) = f (t) +
∫ t

0
K (t, s) f (s) ds, (4.9)

where g is a piecewise continuous function, has a unique piecewise continuous
solution f for all t > 0 if K is bounded on 0 < s < t and if there exists a monotone
increasing function a with limt→0 a (t) = 0, such that for all 0 < s < t,

∫ t

s
|K (t, τ )| dτ ≤ a (t − s). (4.10)

Unfortunately, equation 4.8 is a Volterra equation of the first kind and
cannot be dealt with directly. However, for barriers L that are H-continuous,
it can be recognized as a linear generalized Abel integral equation, that is,
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an equation of the type

g(t) =
∫ t

0

K(t, s) f (s)

(t − s)h
ds, (4.11)

where f is the unknown, g is a continuous function, and K is a continuous
kernel for s ≤ t and 0 < h < 1. In our case, h = 1/2. Abel integral equations
are frequently encountered in physics, and there are methods to prove
the existence and uniqueness of a solution by transforming the original
equation into a Volterra equation of the second kind. This transformation
is made through the use of the Abel integral transform A and its inverse
transform A−1 defined for h = 1/2 as

A[ f ](t) =
∫ t

0

f (s)√
t − s

ds, (4.12)

A−1[g](t)= 1
π

d
dt

[∫ t

0

g(s)√
t − s

ds
]

. (4.13)

The application of A−1 to equation 4.8 reduces the problem to a Volterra
equation of the second kind:

Proposition 1 (adapted from Cannon, 1984). If L is H-continuous with H > 1/2,
through the application of the inverse Abel operator, the Volterra equation of the
first kind, 4.8, is equivalent to the Volterra equation of the second kind,

√
2πA−1[g](t) = q (t) +

1
π

∫ t

0
H(t, s)q (s) ds, (4.14)

with the kernel H being defined as

H(t, s) =
∂

∂t

⎧⎨
⎩

∫ t

s

e− (L(τ )−L(s))2

2(τ−s)√
(t − τ )(τ − s)

dτ

⎫⎬
⎭ , (4.15)

and g denotes the continuous function g(t) = K ( L(t)√
t

).

A careful study shows that the kernel H satisfies the conditions of
proposition 1. Thus, the integral equation, 4.14, admits a unique contin-
uous solution, which is the density of the first-passage time to the barrier L.
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5. Conclusion

The stochastic linear integrate-and-fire neuron encodes spike timing as the
first-passage time of an OU process with a fluctuating barrier (Fourcaud-
Trocmé, Hansel, van Vreeswijk, & Brunel, 2003; Sirovich & Knight, 2011).
Such an encoding scheme generates a complex message dependence of the
firing activity in terms of both spiking reliability, which measures the re-
producibility of a firing pattern in response to stereotypical stimulations,
and spiking precision, which quantifies the temporal variability of spiking
events that encode for equivalent stimuli features (Bair & Koch, 1996; Berry
et al., 1997). Because reliability and precision are the two concepts used ex-
perimentally to pool spikes in the same meaningful event, it is fundamental
to understand the interplay of these two notions in view of elucidating the
neural code.

We have revisited the integrate-and-fire model in response to externally
imposed, fluctuating neural input. Previous studies that undertook a similar
task have narrowed down the concept of timescale matching (Shimokawa
et al., 1999), whereby spike reliability and spiking interval precision are
maximized if the typical fluctuation of the barrier matches the mean spike
interval in the absence of fluctuations (Plesser & Geisel, 1999). The integrate-
and-fire model has also been considered in the context stochastic birfurca-
tion theory as a quasi-periodically forced system (Arnold, 1998). From this
perspective, firing patterns are likened to attractors for a train of spikes,
and reliability is understood as the stability of the attractor in the face of
noise perturbation (Tiesinga, 2002). Alternatively, it is also worth mention-
ing that patterns of spiking times have been shown to converge to random
attractors in noiseless integrate-and-fire systems driven by frozen noise
(Lajoie, Lin, & Shea-Brown, 2013; Lin, Shea-Brown, & Young, 2009a, 2009b).
From a different point of view, it is well documented that the presence of
noise in subthreshold stimuli can enhance the ability of a neuron to detect
weak signals, giving rise to the concept of stochastic resonance (Rudolph &
Destexhe, 2001; Stacey & Durand, 2001).

Here, we clarify how internal and external neuronal noise combine to
shape the reliability and precision of the firing activity of the sLIF neuron.
We first formulate the most general Markovian framework amenable to
simulate the situation of the experiment of Mainen and Sejnowski (1995).
Similar to previous work (Shimokawa et al., 2000), we define the succession
of spikes as the outcome of an inhomogeneous Markov chain. Identifying
the Hölder exponent of the effective barrier as the crucial order parameter,
we simulate our Markov chain for injected currents that give rise to various
H-continuous effective barriers. Based on our numerical experiments, we
briefly discuss the message dependence of the sLIF encoding. We explain the
firing regime of a neuron from the interplay of internal noise and external
frozen noise: the latter noise gives rise to the statistical profile of the effective
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barrier, while the former noise is responsible for the pathwise properties of
the subthreshold voltage trace.

Our analysis suggests the existence of two spiking regimes. If the injected
frozen noise is less singular than the internal neuronal noise (H > 1/2), the
firing activity admits a continuous probability density of spiking times,
whereas the probability density becomes singular, almost everywhere either
zero or infinity, if the frozen noise is more singular than the internal noise
(H < 1/2). In particular, the nature of the spiking regime depends on the
properties of neural noise and is valid for both supra- and subthreshold
inputs. In a related paper (Taillefumier & Magnasco, 2013), we explain
the nature of the first-passage distribution in the singular spiking mode,
while elaborating on the relevance of our analysis to the neural code. This
article glosses over these issues, only to focus on the Markovian framework
introduced to characterize the firing activity of the sLIF neuron driven by
frozen noisy input.

We suggest the exploration of three theoretical avenues in the perspective
of widening the scope of our study.

The first direction aims at rigorously characterizing the distribution of
spiking events in the singular spiking mode (H < 1/2). In particular, it is
natural to ask whether the cumulative distribution of the spiking measure
is homogeneously Hölder continuous for a given exponent h. Indeed, it can
very well be that the spiking measure μH admits a nontrivial spectrum of lo-
cal Hölder exponents h, in which case μH can be decomposed into measures
μh supported by subsets of times for which the cumulative measure has h
for local Hölder exponent. Such a measure μH can be treated through the
multifractal formalism to yield its singularity spectrum, which associates
the Hölder exponent with the fractal dimension of μh and is characteristic
of the statistics of μH (Stanley & Meakin, 1988). We predict that the multi-
fractal nature of the spiking measure is closely related to the distribution of
the local minima of the effective barrier that are reached or left faster than
a typical voltage trajectory (i.e, with a local left or right Hölder exponent
h < 1/2).

Second, if our study is mainly conceptual, we hope to design numerical
methods to bring our analysis closer to experimental relevance. Specifically,
we intend to develop an efficient statistical estimator for the local Hölder
exponent of the empirical cumulative, tailored to the specifics of the first-
passage time problem. If the method would invariably rely on measuring
the concentration of the experimental measure in the vicinity of spiking
times (Allain & Cloitre, 1991), it should crucially take into account the
fundamental asymmetry of the problem: every downward feature of the
effective barrier casts a shadow at a later time. As a consequence, left and
right Hölder exponents need to be carefully distinguished.

Third, the Hölder singularity of a neuron’s afferent input results from
the time integration of the activity of the surrounding network of neurons,
through the filter of its circuit connectivity. This begs for understanding
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which features of the network connectivity promote impeding currents of
a given irregularity, whether they arise spontaneously or as a response to
some driving input. We envision that the completion of such a program
would require describing the stochastic activity of a network of neurons
as the evolution of interacting continuous-time random walks. In that
respect, we have developed an exact event-driven simulation algorithm
to study the precise temporal propagation of firing patterns in networks
of stochastic perfect integrate-and-fire neurons (Taillefumier, Touboul, &
Magnasco, 2012).

Appendix: Mathematical Proofs

In this appendix, we prove rigorously the two properties that establish the
ergodicity of the FPMC: the Feller property and the irreducibility property
(Hernández-Lerma & Lasserre, 2003). First, though, we need the following
elementary result that justifies approximating the distribution of the first-
passage time τ to a barrier L with the law of the first-passage time’s τ ′

corresponding to a barrier L′ that is close to L in some sense.

Proposition 2. Given a real continuous process X and a real x0, if a sequence of
bounded continuous functions {Ln} satisfies Ln(0) > x0 and converges uniformly
to L on R

+, then τn = inf{t > 0 | Xt > Ln(t)} converges in law to τ = inf{t >

0 | Xt > L(t)}.

Proof. Given a probability space (�,F, P), let X : � → Cx0
(R+) be a real

continuous process with natural filtration Ft taking values in the set of con-
tinuous functions satisfying x(0) = x0. Note that for any bounded continu-
ous function L in Cb(R

+) and for every ω in �, the first-passage time τ (ω) to
the barrier L can be seen as a real function defined on Cb(R

+) by L �→ τL(ω).
Moreover, in the complete separable metric space (Cb(R

+), | · |∞), it is a
continuous function of its argument. Indeed, given a continuous barrier L
and a positive real ε > 0, by definition of τ , for any ω, we have Xt (ω) < L(t)
if t < τL(ω) − ε, so that, by continuity of the sample paths, we can define

sup
0<t<τL(ω)−ε

(L(t) − Xt (ω)) = δ− > 0. (A.1)

In the same way, we can define

sup
τL(ω)<t<τL(ω)+ε

(Xt (ω) − L(t)) = δ+ > 0. (A.2)

Setting δ = min(δ+, δ−), for every L′ such that |L′ − L|∞ < δ, we have that
|τL(ω) − τL′ (ω)| < ε.
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As a consequence, if Ln converges uniformly toward L when n tends
toward infinity, the previous continuity result implies the point-wise sure
convergence,

lim
n

τn(ω) = τ (ω), (A.3)

which entails the convergence in law.

Equipped with the previous elementary fact, we restrain ourselves to
the case of the OU process U (which can easily be extended to the time-
inhomogeneous case of one-dimensional Gauss-Markov processes) and
proceed to prove the Feller property of the FPMC:

Property 1. If the barrier L is homogeneously Hölder continuous, the
Markov chain T is strong Feller:

∀B ∈ B(S), φn → φ ∈ S, ⇒ κφn
(B) → κφ(B). (A.4)

Proof. Since every open set is a set of continuity, it is enough to show the
property for the open arc sets A. We proceed in three steps.

i. Uniform tightness on the real half line: Given the continuous phase
map π : [φ,+∞) → R/Z, posit B = π−1(A) ∩ [φ,+∞), which represents
the unwrapped version of A in the real half-line [φ,+∞). In particu-
lar, κφ(A) = kφ(B), where kφ is defined by equation 2.16. Since the bar-
rier L can be seen as a periodic continuous function on [φ,+∞), there
exists M > supt∈R+ L(t). Denoting τφ = inf{t > φ |Ut > L(t)} and defining
τM
φ = inf{t > φ |Ut > M} for the same OU process U, we have τφ ≤ τM

φ .
Then {τM

φ < +∞} ⊂ {τφ < +∞} entails P(τφ < +∞) ≥ P(τM
φ < +∞). It is

well known that P(τM
φ < +∞) = 1, that is, an OU process hits a constant

barrier in finite time with probability one. As a consequence, P(τφ > N)

vanishes uniformly in φ when N tends to infinity: for any ε > 0, there exists
Nε > 1, such that for all φ in [0, 1), kφ(B ∩ [Nε,∞)) < ε.

ii. Convergence in law of the first-passage times: Considering a sequence
φn → φ, define the first-passage time τn = inf{t > φn |Ut > L(t)} with Uφ+

n
=

L(φn) − (l − r), where l is the threshold value and r is the reset value with
r < l. The shifted first-passage time τn − (φn − φ) has the same law as τ ′

n =
inf{t > φ |Ut > Ln(t)} for a shifted barrier Ln(t) = L

(
t − (φ − φn)

)
with inti-

tial condition Uφ+ = Ln(φ) − (l − r). Since L is homogeneously Hölder con-
tinuous for a given exponent H > 0, for any N > 0, there exists cN such that

∀ψ, φ ∈ [0, N], |ψ − φ| ≤ δ ⇒ |L(ψ) − L(φ)| ≤ cNδH . (A.5)

By definition of φn, for any δ > 0, there is N > 0 such that for all n > N,
|φ − φn| < δ, which implies

|L(ψ) − Ln(ψ)| = |L(t) − L
(
ψ − (φ − φn)

)| ≤ cN|φ − φn|H . (A.6)
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Thus Ln uniformly converges to L on every compact of R
+, which implies

that τ ′
n converges in law toward τ by proposition 2. Now, since the

deterministic quantity |τ ′
n − τn| = |φ − φn| → 0 when n tends to infinity,

the sequence τn converges in law toward τφ (Billingsley, 1999).
iii. Feller property: For φ in [0, 1), define the open sets B′ = π−1(A) ∩

[φ, Nε/4), where Nε/4 is defined as in step 1. Since for all φ in [0, 1), any
open set of [0, Nε/4] is a τφ-continuity set, convergence in law is equivalent
to convergent in distribution: there exists nε > 0 such that

∀n > nε,
∣∣P (

τn ∈ B′) − P
(
τ ∈ B′)∣∣ ≤ ε/2. (A.7)

Recapitulating, we have for all n > nε :

∣∣κφn
(A) − κφ(A)

∣∣ ≤ ∣∣kφn

(
π−1(A) ∩ [φn,+∞)

)
− kφ

(
π−1(A) ∩ [φ,+∞)

)∣∣, (A.8)

≤ ∣∣kφn
(B′) − kφ(B′)

∣∣ (A.9)

+ ∣∣kφn
(B \ B′)

∣∣ + ∣∣kφ(B \ B′)
∣∣, (A.10)

≤ ε/2 + ε/4 + ε/4 = ε, (A.11)

proving the Feller continuity property.
We finally demonstrate the property claimed in the main text that implies

the irreducibility of the FPMC.

Property 2. The Markov chain T is irreducible, that is, for all B ∈ B(S)

if ∃ψ ∈ S, κψ (B) > 0, then ∀φ ∈ S, κφ(B) > 0. (A.12)

Property 2 is very strong stating that if a set can be attained with non zero
probability from a given starting time t, it can be reached with positive prob-
ability from all other starting times s. This clearly implies the uniqueness
of an invariant measure, whose existence stems from the Feller property.
Notice that the property of irreducibility holds for measurable sets in B(S)

that can very well be of Lebesgue measure zero in the case of singular
kernels κψ .

Proof. i. Formulation of a sufficient condition: Suppose that a measurable
set B ∈ B(S) is such that κψ (B) > 0, which is equivalent to kψ (π−1(B) ∩
[ψ,+∞)) > 0, where π−1(B) ∩ [ψ,+∞) is the unwrapped version of B
on [ψ,+∞). Extending L periodically on R, it is enough to show that if
kψ (B) > 0 with B ∈ B([ψ,+∞)), then for all s < ψ , we have kφ(B) > 0. We
can further suppose that inf B > ψ . Indeed, if inf B = ψ and kψ (B) > 0, we
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can always choose a > 0 small enough so that kψ (B ∩ [ψ + a,+∞)) > 0.
Consider the OU process U on [ψ, 1∞) with initial condition Uψ = L(ψ) −
(l − r). There is a > 0 such that for inf0≤t−ψ≤a L(t) = l′ > Uψ = L(ψ) −
(L − r) and thus P (τ < a + ψ) < P

(
τ ′ < a + ψ

)
with τ = inf{t > ψ |Ut >

L(t)} and τ ′ = inf{t > ψ |Ut > l′}. As lima→0 P
(
τ ′ < a + ψ

) = 0, denoting
kψ (B ∩ [φ,+∞)) = δ > 0, there is a > 0 such that P

(
τ ′ < a + ψ

)
< δ/2 so

that

kφ(B ∩ [a,+∞)) = kφ(B ∩ [φ,+∞)) − ks(B ∩ [0, a]) > δ − δ/2

= δ/2>0. (A.13)

ii. Transition kernel of the killed diffusion: Consider the usual OU process
U on [φ,+∞) with initial condition Uφ = L(φ) − (l − r). For each barrier L,
we can define a killed Markov process Ū by sending a trajectory of U to an
absorbing cemetery state � when it first hits the boundary L:

Ūψ =
{

Uψ if ψ < τ

� if ψ ≥ τ
.

We can generalize the notion of transition kernel for killed diffusion. If
the barrier is regular enough, such a transition kernel k̄ is obtained through
solving the Fokker-Planck equation with absorbing condition on the barrier.
In the case of a general boundary, we can always define the transition kernel
as

k̄(φ, x;ψ, y) = k(φ, x;ψ, y)
(
1 − �(φ, x;ψ, y)

)
< k(φ, x;ψ, y), (A.14)

where k is the transition kernel for the free process U and �(φ, x;ψ, y) is
the probability that a bridge process between (φ, x) and (ψ, y) crosses the
barrier

�(φ, x;ψ, y) = P
(

sup
φ≤v≤ψ

(Uv − L(v)) > 0 |Uφx < L(φ),Uψ = y < L(ψ)
)
.

(A.15)

The kernels k̄ define a collection of sub-Markov measures k̄(φ, x;ψ, ·)
satisfying

∫ L(ψ)

−∞
k̄(φ, x;ψ, y) dy = P(τ > t) < 1 with

τ = inf{ψ > φ |Uψ > L(ψ)}. (A.16)
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Moreover, for all y < L(ψ), k̄(φ, x;ψ, y) is positive since �(φ, x;ψ, y) < 1
as long as x < L(φ) and y < L(ψ).

iii. Strong Markov property: Suppose as in i that B ∈ B([φ,+∞)) with
inf B = a > φ satisfies kφ(B) > 0, define for all v, φ < v < a, the bounded
measurable function x �→ μv(x; B) as

μv(x; B) = P(τx ∈ B) with τx = inf{ψ > v |Uψ > L(ψ),Uv = x}.
(A.17)

By the strong Markov property, we have

∫ L(v)

−∞
k̄(φ, L(φ) − (l − r); v, x)μv(x; B) dx = kφ(B) > 0. (A.18)

Since k̄(φ, L(φ) − (l − r); v, x) is positive finite on x < L(v), supx<L(v)

k̄(φ, L(φ) − (l − r); v, x) = M < ∞ and we have

M
∫ L(v)−ε

−N
μv(x; B) dx > 0, (A.19)

for N > 0 large enough and ε > 0 small enough. From there, we deduce
that there are δ > 0 and a Lebesgue measurable set Dδ ⊂ [−N, L(v) − ε]
such that μv(x; B) > 0 for all x ∈ D. Finally, since we know from ii that for
all (φ, x) with x < L(φ), k̄(φ, x; v, y) > 0, we conclude that for all φ < t,

kφ(B) ≥
∫

D
δ

k̄(φ, L(φ) − (l − r); v, x)μv(x; B) dx (A.20)

≥ δ

∫
D

δ

k̄(φ, L(φ) − (l − r); v, x) dx > 0. (A.21)
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Bouleau, N., & Lépingle, D. (1994). Numerical methods for stochastic processes. New

York: Wiley.
Bressloff, P. C. (2010). Metastable states and quasicycles in a stochastic Wilson-Cowan

model of neuronal population dynamics. Physical Review E, 82(5), 051903.
Bryant, H., & Segundo, J. (1976). Spike initiation by transmembrane current: A white-

noise analysis. Journal of Physiology, 260(2), 279–314.
Burkitt, A. (2006a). A review of the integrate-and-fire neuron model: 1. Homoge-

neous synaptic input. Biological Cybernetics, 95(1), 1–19.
Burkitt, A. (2006b). A review of the integrate-and-fire neuron model: 2. Inhomoge-

neous synaptic input and network properties. Biological Cybernetics, 95(2), 97–112.
Butts, D. A., Weng, C., Jin, J., Yeh, C.-I., Lesica, N. A., Alonso, J.-M., & Stanley, G. B.

(2007). Temporal precision in the neural code and the timescales of natural vision.
Nature, 449(7158), 92–95.

Cannon, J. R. (1984). The one-dimensional heat equation. Reading, MA: Addison-Wesley.
Cecchi, G. A., Sigman, M., Alonso, J.-M., Martı́nez, L., Chialvo, D. R., & Magnasco,

M. O. (2000). Noise in neurons is message dependent. Proceedings of the National
Academy of Sciences, 97(10), 5557–5561.

Courant, R., & Hilbert, D. (1962). Methods of mathematical physics. Vol. 2: Partial differ-
ential equations. New York: Wiley.
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Lévy, P. (1948). Processus stochastiques et mouvement brownien. Suivi d’une note de M.
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