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Finding the first time a fluctuating quantity reaches a given bound-
ary is a deceptively simple-looking problem of vast practical im-
portance in physics, biology, chemistry, neuroscience, economics,
and industrial engineering. Problems in which the bound to be
traversed is itself a fluctuating function of time include widely
studied problems in neural coding, such as neuronal integrators
with irregular inputs and internal noise. We show that the prob-
ability p(t) that a Gauss–Markov process will first exceed the bound-
ary at time t suffers a phase transition as a function of the rough-
ness of the boundary, as measured by its Hölder exponent H. The
critical value occurs when the roughness of the boundary equals
the roughness of the process, so for diffusive processes the critical
value is Hc = 1/2. For smoother boundaries, H > 1/2, the probability
density is a continuous function of time. For rougher boundaries,
H < 1/2, the probability is concentrated on a Cantor-like set of zero
measure: the probability density becomes divergent, almost every-
where either zero or infinity. The critical point Hc = 1/2 corresponds
to a widely studied case in the theory of neural coding, in which the
external input integrated by a model neuron is a white-noise pro-
cess, as in the case of uncorrelated but precisely balanced excitatory
and inhibitory inputs. We argue that this transition corresponds
to a sharp boundary between rate codes, in which the neural firing
probability varies smoothly, and temporal codes, in which the neu-
ron fires at sharply defined times regardless of the intensity of
internal noise.

first-passage time | neural code | random walk

ABrownian process W(t) that starts at t = 0 from W(t = 0) = 0
will fluctuate up and down, eventually crossing the value 1

infinitely many times: for any given realization of the processW,
there will be infinitely many different values of t for whichW(t) = 1.
Finding the very first such time,

τ ¼ infft  j W ðtÞ ¼ 1g;

known as the “first passage” of the process through the boundary
B = 1, is easier said than done, one of those classical problems
whose concise statements conceal their difficulty (1–4). For gen-
eral fluctuating random processes, the first-passage time problem
is both extremely difficult (5–9) and highly relevant, due to its
manifold practical applications: it models phenomena as diverse
as the onset of chemical reactions (10–14), transitions of macro-
molecular assemblies (15–19), time-to-failure of a device (20–
22), accumulation of evidence in neural decision-making circuits
(23), the “gambler’s ruin” problem in game theory (24), species
extinction probabilities in ecology (25), survival probabilities of
patients and disease progression (26–28), triggering of orders in
the stock market (29–31), and firing of neural action potentials
(32–37).
Much attention has been devoted to two extensions of this basic

problem. One is the first passage through a stationary boundary
within a complex spatial geometry, such as diffusion in porous
media or complex networks. These models are used to describe
foraging search patterns in ecology (38, 39), and the speed at

which a node can receive and relax information in a complex
network (40, 41).
The second extension is the first passage through a boundary

that is a fluctuating function of time (42–44), a problem with di-
rect application to the modeling of neural encoding of informa-
tion (45, 46). This problem and its application are the subject of
this paper. The connection arises as follows. The membrane volt-
age of a neuron fluctuates in response both to synaptic inputs as
well as internal noise. As soon as a threshold voltage is exceeded,
a positive feedback loop triggers a chain reaction of ion channel
openings, causing the neuron to generate an action potential or
spike. Therefore, the generation of an action potential by a neuron
involves the first passage of the fluctuating membrane voltage
through the threshold. This dynamics of spike generation under-
lies neural coding: neurons communicate information through
their electrical spiking, and the functional relation between
the information being encoded and the spikes is called a “neural
code.” Two important classes of neural code are the “rate codes,”
in which information is only encoded in the average number of
spikes per unit of time (rate) without regard to their precise
temporal pattern, and the “temporal codes,” in which the precise
timing of action potentials, either absolute or relative to one
another, conveys information (47).
Central to the distinction between rate and temporal codes is

the notion of jitter or temporal reliability. This notion originates
from repeating an input again and again and aligning the re-
sulting spikes to the onset of the stimulus. Time jittering is assessed
graphically through a raster plot and quantitatively in a temporal
histogram [peristimulus time histogram (PSTH)], which permits
verifying the temporal accuracy with which the neuronal process
repeats action potentials.
A fundamental observation is that the very same neuron may

lock onto fast features of a stimulus yet show great variability
when presented with a featureless, smooth stimulus (33). These
two are extreme examples from a continuum—the jitter in spike
times depends directly on the stimulus being presented (48).

First Passage Through a Rough Boundary
We shall make use of a simple geometrical construction, map-
ping the dynamics of a neuron with an input, internal noise and
a constant threshold voltage, onto a neuron with internal noise
and a fluctuating threshold voltage; the construction thus maps
the input onto fluctuations of the threshold. We use as our model
neuron the “leaky integrate-and-fire neuron,” a simple yet widely
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used (36, 48–60) model of neuronal function defined by the
following:

_V ¼ − αV þ IðtÞ þ ξðtÞ; [1]

where V is the membrane voltage, 1/α is a decay time given by the
RC constant of the membrane, I the current that the neuron
receives as an input through synapses or a stimulating electrode,
and ξ, an internal noise. When V first reaches a threshold value
T, an action potential is generated, and the voltage is reset to
zero. The nonlinearity of the model is concentrated on the spike
generation and subsequent reset, so that between spikes we can
integrate separately the effect of the input and of the noise;
defining as VI and Vξ these separate processes,

V ¼ VI þ Vξ;

they obey the following equations:

_VI ¼ − αVI þ IðtÞ

_V ξ ¼ − αVξ þ ξðtÞ:

Because the input I(t) is fixed, we can make the choice to solve
the VI equation starting from VI(0) = 0 just once without any
resets, preserving its continuity, because it has no stochastic
inputs; thus, all of the resets of the original V process are only
carried out on the Vξ process. The condition of V(t) reaching the
threshold T is then recast as Vξ reaching the boundary T − VI.
In this way, we have transformed a problem with a variable input
I(t) and a constant threshold T into a problem with constant
(zero) input and a fluctuating threshold BðtÞ≐T −VIðtÞ. We stress
VI is a “frozen” function just like the original I(t), in fact de-
pendent only on I(t) and not at all on the process Vξ because ξ
does not appear in its defining equation. The reset operation

V ¼ T→   V ¼ 0

becomes

Vξ ¼ T −VI→  Vξ ¼ 0−VI ;

or, in other words, upon touching the boundary B(t), the process
Vξ instantaneously jumps back by T units, to B(t) − T.
These considerations lead us to examine the problem of the

first-passage time through a fluctuating threshold, and more
generally that of “recurring” first passages through a fluctuating
threshold. In the recurring problem, as we have formulated it,
upon touching the boundary the walker is immediately teleported
back, in our case an amount T, and keeps going until the next
passage. It should be noted that this recurring-passage problem
will lead to distributions that, naively, one would expect to be
smoother, because the probability distribution for the second
spike consists of passages starting, not from a fixed starting point,
but from the first passages of the first spike.
To develop some intuition about the problem, we are going to

break it up into two parts, a “geometrical optics” part, in which
most first passages can be accounted for by simple “visibility”
considerations, and a “diffractive” correction in which we take
into account that random walkers can turn around corners. The
geometrical part is simple: most first passages are generated by
the walker running into a hard-to-avoid obstacle, as shown in
Fig. 1A. The intuition is that the walkers are moving left to right,
rising onto a ceiling from which features are hanging, and as the
walkers rise they collide with some feature. The problem is thus
twice symmetry-broken: what matters are local minima of the
boundary, not the maxima, which are hard to get into; and the
walkers only spontaneously run onto the left flank of a local
minimum. Therefore, a good first-order approximation follows
from observing that most of the first passages occur on the left

Fig. 1. How a random walk V first hits a moving boundary L. In all panels, time t is horizontal, and the process V and the boundary L, vertical. (A) It is highly
probable to hit the left flank of a minimum, as the walkers are moving left to right and from the bottom up. (B) Each minimum “casts a shadow” behind it, so
that hitting some features behind may be hard, as it requires missing the minimum, then rising sufficiently high to hit the second feature. (C) Hitting the right
(rising) flank of a minimum is hardest, because it requires missing the minimum narrowly, then rising up, setting up a “race condition” between the boundary
and the walker. (D and E) Three hundred sample paths, which start at the red point on the left and have their first passage through the boundary (white) on
the red point in the right. White curve: average trajectory (analytic). Sample paths are colored by the probability density of the point they go through. In D,
hitting a left flank of a minimum is easy, and the average trajectory to do so does not significantly deviate from the deterministic trajectory until the very end,
where the white curve can be seen to rise onto the minimum following a square root. In E, hitting the right flank of a minimum is hard, and the average
trajectory to do so strongly deviates from the deterministic trajectories of the system, missing the minimum by just enough not to collide with it, and then
rapidly rising to meet the first-passage point, again, in a square-root profile.
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flanks of local minima, and deeper local minima cast “shadows”
on subsequent shallower minima.
However, there is a finite probability that a walker may nar-

rowly avoid a local minimum and pass just under it, only to
rapidly rise afterward and hit the right rising flank of the barrier,
as shown in Fig. 1C. This is, effectively, a race between the boun-
dary and the walker: if the walker can rise far faster than the
boundary, then there is some probability of passage right of the
minimum. However, if the boundary rises faster than a walker
can catch up with, then the probability of passage right of the
minimum can be exponentially small. Let us consider a local
minimum of the barrier B(t) at time t0 of the following form:

Bðt≥ t0Þ ≈ Bðt0Þ þ jt− t0jH ;

and consider a walker that has just narrowly missed the minimum
by an amount «: W(t0) = B(t) − «. The probability of the process
to be at value W at time t > t0 is, to leading order,

PðW ; tÞ ≈ exp

 
− ðW −W0Þ2
Γðt− t0Þ

!
;

where Γ is the diffusion constant of Vξ, and thus the probability
of arriving at the barrier at time t is approximately the following:

PbðtÞ ¼ lim
e→0

PðBðtÞ; tÞ ≈ exp
�
− ðt− t0Þ2H−1=Γ

�
:

When H < 1/2, this expression has an essential singularity and
has a value which is singular-exponentially small for small times.
In fact, the probability and all of its derivatives are zero at t0. For
instance, consider a barrier whose flank to the right of the local
minimum rises like

ffiffiffiffiffi
Δt4

p
. As the fourth root in the barrier rises

much more rapidly than the square root in the walker, the prob-
ability of hitting the barrier after the minimum looks like
expð− 1=

ffiffiffiffiffi
Δt

p Þ, a function that has an essential singularity at 0:
the function as well as all of its derivatives approach 0 as Δt→ 0+.
The parameter H we described above, which is called the

Hölder exponent of the function, quantifies the ability of the
barrier to, locally, rise faster or slower than a random walk. More
formally, a function f(t) is said to be H-Hölder continuous if it
satisfies jf ðtÞ− f ðsÞj≤Cjt−sjH ; the roughness exponent H of the
function is the largest possible value of H for which the function
satisfies a Hölder condition.
Up to now, we have considered a single local minimum, and

even though the probability of crossing is singular-exponential
small for H < 1/2, it is still nonzero. However, if the boundary is
rugged, the local minima are dense. This density is not an issue
for H > 1/2, when the inputs are smoother than the internal
noise; in this case the probability density of first passages is

Fig. 2. Raster plots and PSTH. A small segment of our dataset, smaller
than a leak constant, is displayed for clarity. A raster plot and a plot of
the PSTH are shown for each of three Hölder exponents: 0.25 (rough), 0.5
(transition), and 0.75 (smoother, although still not differentiable). Ap-
proximately the same number of spikes occurs in all three groups. The
raster plots display the times at which the neuron fired (i.e., a first passage)
stacked vertically (as a function of stimulus presentation number) to
show repeatability. The PSTHs show a temporal histogram of said spikes at
extremely high resolution, a bin size in the microsecond range. Note
the differences in vertical scale of the PSTHs: for Hölder exponent H =
0.75, there are no bins with fewer counts than 10 events or more than
60, whereas for H = 0.25 most bins have 0 counts and a few have over
1,000 counts.

Fig. 3. (A) Probability density of firing as a function of time (horizontal) and
Hölder exponent (vertical), color coded in log scale. Fifty-one values of the
Hölder exponent H between 0.25 and 0.75 are stacked vertically. The bin
counts shown in the PSTHs of Fig. 2 are color coded with a logarithmic code.
(B) Three-dimensional rendering of a section of the data in A: vertical axis
and color scale is logarithmic in the rate, where it is evident that toward the
back of the figure (Hölder exponent H = 0.25) the rate either diverges or
goes to zero almost everywhere.
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nowhere zero. However, when H < 1/2, the input is rougher or
burstier than the internal noise; the probability density ceases to
be a function, and it is zero almost everywhere except for a set
of zero measure where it diverges.

Results
We shall present the more formal proofs of regularity of the first-
passage time probability distributions elsewhere. We proceed
now, instead, to present and analyze numerical simulations.
We carried out careful numerical integration of Eq. 1, with

leak constant 10 ms, for all Hölder exponents H in the range
(0.25–0.99) in increments of 0.01. In order for the results of the
simulations at different Hölder exponents to be directly com-
parable with one another, we generated the inputs I(t) by using
the exact same overall coefficients in the basis functions of the
Ornstein–Uhlenbeck process described in ref. 61, but scaled
differently according to the Hölder exponent laws in the natural
way. For each one of the 75 Hölder exponents between 0.25 and
0.99, 62,000 repetitions of the 10-s stimulus were performed,
accumulating 100,000,000 first passages per Hölder exponent.
We computed the first passages using the fast algorithm de-
scribed in refs. 56 and 61, which carries out exact integration in
intervals which are recursively subdivided when the probability
that the process attains the first passage exceeds a threshold, in
our case 10−20. The first passages were computed to an accuracy
of 2−26 = 1/67108864, and the allowable probability that a com-
puted passage is not in fact the first one is pfail = 10−15, so as to
have an overall probability of 10−5 that any one of our 7.5 billion
numbers is not in fact a true first passage. The values of the first
passages were histogrammed in 2222 bins; this histogram, which
we call our PSTH in analogy to the term in use in neural coding,
represents the instantaneous probability distribution of first pas-
sage integrated over the bins, or, equivalently, the finite differ-
ences over a grid of the cumulative probability distribution func-
tion for firing.
The transition from smooth probability distribution to a sin-

gular measure is illustrated in Figs. 2 and 3, where, as the Hölder
exponent is lowered, the concentration of the first-passage prob-
ability on a small set is evident. Histogramming the individual bins
of the PSTH, we get the probability distribution to observe a given
instantaneous rate of firing, shown in Fig. 4. For large Hölder
exponents, the rate does not deviate far from its mean. However,
as the Hölder exponent becomes 1/2, both the probability of ob-
serving a zero rate, as well as the probability of seeing a rate far
larger than the mean, become substantial. For H < 1/2, it becomes
very probable to observe either zeros or large values of the in-
stantaneous rate. This statement can be made precise by observ-
ing the tails of the probability distribution, and this is best
accomplished, given our numerical setup, by looking at the tails of
the cumulative probability distribution, namely the following:

FðxÞ ¼
Zx
−∞

P
�
x′
�
dx′;

and then analyzing 1 − F(x) vs. x for large x, which is carried out
in Fig. 5. Fig. 5A shows that the tails of the distribution, when
x � 1, decay exponentially for H > 1/2 but behave like stretched
exponentials when H < 1/2 as follows:

1−FðxÞ ≈ e−ax; H > 1=2  ; [2]

1−FðxÞ ≈ e−b
ffiffi
x

p
; H < 1=2: [3]

This observation is quantified in Fig. 5B, where log(1 − F) is
fitted with a quadratic polynomial in

ffiffi
x

p
, namely the following:

− logð1−FðxÞÞ ≈ axþ b
ffiffi
x

p þ c:

For H < 1/2, the quadratic coefficient in the fit, which gives the
convergent linear term, vanishes, uncovering the stretched expo-
nential behavior. This quantitatively proves our assertion of a
phase transition at H = 1/2.

Discussion
In abstract, mathematical terms, we have shown that the prob-
ability of observing a first passage of a Gauss–Markov process
through a rough boundary of Hölder exponent H suffers a phase
transition at H = 1/2. The integral of the probability on equi-
spaced grids becomes a stretched exponential, showing the un-
derlying instantaneous probability has ceased to be a function:
it is concentrated on a Cantor-like set within which it is infinite,
and it is zero outside this set. Gauss–Markov processes, such as

Fig. 4. Density map of PSTH bin counts. The individual bin counts of the
PSTHs as shown in Figs. 2 and 3 are histogrammed here, and the value dis-
played as a logarithmic color map. All 7.5 billion spikes in our dataset were
used for this plot. The bin counts are normalized by the average bin count
(108/222). For large Hölder exponents, the probability of observing an actual
count agrees with counting statistics given the average. As the Hölder ex-
ponent becomes smaller, this distribution becomes wider, until below 0.5 it
becomes heavy-tailed. Notice the bottom row of the figure, representing the
probability of observing a bin with zero counts. It is zero for all H > 0.5,
becomes nonzero at H = 0.5, and for H < 0.5 it is the maximum of the dis-
tribution (i.e., the brightest red value).
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the Ornstein–Uhlenbeck process, can be mapped to the canon-
ical Wiener process through a deterministic joint scaling and
time-change operation that preserves Hölder continuity. (This
transformation is called Doob’s transform.) Furthermore, being
the solution to a linear Langevin equation, the first-passage prob-
lem for drifted Gauss–Markov processes can always be formulated
in terms of a fluctuating effective barrier that integrates the drift
contribution. Therefore, our analysis directly applies to this sit-
uation. As nonlinear diffusions with bounded drift behave like
Brownian motion at vanishingly small scales, we envision that
our result is valid for this more general class of stochastic pro-
cesses with Hölder continuous barrier. However, in this case, the
barrier under consideration does not summarize the drift con-
tribution of the diffusion.
In terms of the original motivating problem, the encoding of

an input into the timing of action potentials by a model neuron,
this means that within our (theoretical and rather aseptic)
model, there is an abrupt transition in character of the PSTH,
the instantaneous firing rate constructed from histogramming
repetitions of the same stimulus. The transition happens when
the input has the roughness of white noise, conceptually the case
in which the neuron is receiving a barrage of statistically in-
dependent excitatory and inhibitory inputs, each with a random,
Poisson character. For inputs that are smoother than this, the
PSTH is a well-behaved function whose finite resolution ap-
proximations converge nicely and properly to finite values. How-
ever, when the input is rougher than uncorrelated excitation and
inhibition, for example when excitatory and inhibitory activities
are clustered positively with themselves and negatively with one
another, then the PSTH is concentrated on a singularly small set,
which means that the PSTH consists of a large number of sharply-
defined peaks of many different amplitudes, but each one of them
having precisely zero width. The width of the peaks is zero re-
gardless of the amplitude of the internal noise; increasing internal
noise only leads to power from the tall peaks being transferred
to lower peaks, but all peaks stay zero width. Because the set of

peaks is dense, refining the bins over which the PSTH is histo-
grammed leads to divergencies.
Concentration of the input into rougher temporal patterns

would evidently be a function of the circuit organization. For ex-
ample, in primary auditory cortex, the temporal precision observed
in neuronal responses (62) appears to originate in the concentra-
tion of excitatory input into sharp “bump”-like features (63), an
observation consistent with event-based analysis of spike trains
(64). A network property that has been implicated in temporal
precision is that of high-conductance states (65); it is plausible that,
for carefully balanced recurrent excitation, leading to high gain
states, such high-conductance states may lead to effectively bursty
input to individual neurons.
It currently remains to be seen whether our mechanism will

resist the multiple layers of real-world detail separating the ab-
stract Eq. 1 from real neurons in a living brain. Obviously, the
infinite sharpness of our mathematical result shall not withstand
many relevant perturbations, which will broaden our zero-width
peaks into finite thickness. That this will happen is indeed sure,
but not necessarily relevant, because a defining characteristic of
phase transitions is that their presence affects the parameter
space around them even under strong perturbations: that is why
studying phase transitions in abstract, schematic models has
been fruitful. Thus, the real question remaining is whether our
mechanism can retain enough temporal accuracy to be relevant
to understand the organization of high–temporal-accuracy sys-
tems such as the auditory pathways, and whether our description
of the roughness of the input as the primary determinant of
coding modality, temporal code or rate code, may illuminate and
inform further studies.

ACKNOWLEDGMENTS. We are indebted to Jonathan Touboul and Mayte
Suarez-Farinas for helpful comments and advice, and to the members of our
research group for critical input. This work was partially supported by
National Science Foundation Grant EF-0928723.

1. Risken H (1996) The Fokker-Planck Equation: Methods of Solution and Applications

(Springer, Berlin), 2nd Ed.
2. Wasan MT (1994) Stochastic Processes and Their First Passage Times: Lecture Notes

(Queen’s University, Kingston, ON, Canada).

3. Redner S (2001) A Guide to First-Passage Processes (Cambridge Univ Press,

Cambridge, UK).
4. van Kampen, NG (2007) Stochastic Processes in Physics and Chemistry (Elsevier, North-

Holland Personal Library, Amsterdam).

Fig. 5. The tail of the cumulative probability distribution of observing a given count in the PSTH becomes a stretched exponential at Hölder exponent H = 0.5.
(A) The tails of the cumulative probability distribution, plotted as 1 − F(x) vs. x, for Hölder exponents 0.4, 0.45, 0.5, 0.55, and 0.6 (right to left). The probability
distribution is minus the derivative of these curves. Superposed on the data (black) a fit to the last 105 data points in the cumulative, i.e., the higher 2%
percentile (red), in the form − logð1− FðxÞÞ≈ ax þ b

ffiffiffi
x

p þ c. (B–D) The coefficients a, b, and c for the aforementioned fit, plotted as a function of the Hölder
exponent H. B is a, the linear coefficient defining exponential convergence; C is b; andD is c. Notice that the linear component a is (numerically) zero for H < 0.5,
exposing the

ffiffiffi
x

p
term as the next higher order. For H > 0.5, the positive linear term guarantees convergence of all moments of the distribution.

E1442 | www.pnas.org/cgi/doi/10.1073/pnas.1212479110 Taillefumier and Magnasco

www.pnas.org/cgi/doi/10.1073/pnas.1212479110


5. Siegert AJF (1951) On the 1st passage time probability problem. Phys Rev 81(4):
617–623.

6. Mehr CB, Mcfadden JA (1964) Explicit results for probability density of first-passage
time for 2 classes of Gaussian-processes. Ann Math Stat 35(1):457–478.

7. Vanmarcke EH (1975) Distribution of first-passage time for normal stationary random
processes. J Appl Mech 42(1):215–220.

8. Domine M (1995) Moments of the first-passage time of a Wiener process with drift
between two elastic barriers. J Appl Probab 32(4):1007–1013.

9. Sacerdote L, Tomassetti F (1996) On evaluations and asymptotic approximations of
first-passage-time probabilities. Adv Appl Probab 28(1):270–284.

10. Kramers HA (1940) Brownian motion in a field of force and the diffusion model of
chemical reactions. Physica 7:284–304.

11. Strenzwilk DF (1973) Mean first passage time for a unimolecular reaction in a solid.
Bull Am Phys Soc 18(4):671.

12. Solc M (2000) Time necessary for reaching chemical equilibrium: First passage time
approach. Z Phys Chem 214:253–258.

13. Chelminiak P, Kurzynski M (2000) Mean first-passage time in the steady-state kinetics
of biochemical processes. J Mol Liq 86(1–3):319–325.

14. Arribas E, et al. (2008) Mean lifetime and first-passage time of the enzyme species
involved in an enzyme reaction. Application to unstable enzyme systems. Bull Math
Biol 70(5):1425–1449.

15. Montroll EW (1969) Random walks on lattices. 3. Calculation of first-passage times
with application to exciton trapping on photosynthetic units. J Math Phys 10(4):753.

16. Ansari A (2000) Mean first passage time solution of the Smoluchowski equation:
Application to relaxation dynamics in myoglobin. J Chem Phys 112(5):2516–2522.

17. Goychuk I, Hänggi P (2002) Ion channel gating: A first-passage time analysis of the
Kramers type. Proc Natl Acad Sci USA 99(6):3552–3556.

18. Kurzynski M, Chelminiak P (2003) Mean first-passage time in the stochastic theory
of biochemical processes. Application to actomyosin molecular motor. J Stat Phys
110(1–2):137–181.

19. Abdolvahab RH, Metzler R, Ejtehadi MR (2011) First passage time distribution of
chaperone driven polymer translocation through a nanopore: Homopolymer and
heteropolymer cases. J Chem Phys 135(24):245102.

20. Roberts JB (1974) Probability of first passage failure for stationary random vibration.
AIAA J 12(12):1636–1643.

21. Kahle W, Lehmann A (1998) Parameter estimation in damage processes: Dependent
observation of damage increments and first passage time. Advances in Stochastic
Models for Reliability, Quality and Safety (Birkhäuser, Boston), pp 139–152.

22. Khan RA, Ahmad S, Datta TK (2003) First passage failure of cable stayed bridge under
random ground motion. Applications of Statistics and Probability in Civil Engineering
(IOS Press, Amsterdam), Vols. 1 and 2, pp 1659–1666.

23. Mazurek ME, Roitman JD, Ditterich J, Shadlen MN (2003) A role for neural integrators
in perceptual decision making. Cereb Cortex 13(11):1257–1269.

24. Schmitt FG (1972) Gamblers ruin problem. Am Math Mon 79(1):90.
25. Richter-Dyn N, Goel NS (1972) On the extinction of a colonizing species. Theor Popul

Biol 3(4):406–433.
26. Saebø S, Almøy T, Heringstad B, Klemetsdal G, Aastveit AH (2005) Genetic evaluation

of mastitis resistance using a first-passage time model for Wiener processes for
analysis of time to first treatment. J Dairy Sci 88(2):834–841.

27. Lo CF (2006) First passage time density for the disease progression of HIV infected
patients. Lect Notes Eng Comp 62:117–122.

28. Xu RM, McNicholas PD, Desmond AF, Darlington GA (2011) A first passage time model
for long-term survivors with competing risks. Int J Biostat 7(1)1224–1227.

29. Ammann M (2001) Credit Risk Valuation: Methods, Models, and Applications (Springer,
New York), 2nd Ed.

30. Zhang D, Melnik RVN (2009) First passage time for multivariate jump-diffusion
processes in finance and other areas of applications. Appl Stoch Model Bus 25(5):
565–582.

31. Yi CA (2010) On the first passage time distribution of an Ornstein-Uhlenbeck process.
Quant Finance 10(9):957–960.

32. Capocelli RM, Ricciardi LM (1971) Diffusion approximation and first passage time
problem for a model neuron. Kybernetik 8(6):214–223.

33. Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons.
Science 268(5216):1503–1506.

34. Shimokawa T, Pakdaman K, Takahata T, Tanabe S, Sato S (2000) A first-passage-time
analysis of the periodically forced noisy leaky integrate-and-fire model. Biol Cybern
83(4):327–340.

35. Agüera y Arcas B, Fairhall AL, Bialek W (2003) Computation in a single neuron:
Hodgkin and Huxley revisited. Neural Comput 15(8):1715–1749.

36. Agüera y Arcas B, Fairhall AL (2003) What causes a neuron to spike? Neural Comput
15(8):1789–1807.

37. Sacerdote L, Zucca C (2005) Inverse first passage time method in the analysis of
neuronal interspike intervals of neurons characterized by time varying dynamics.
Brain, Vision, and Artificial Intelligence: Proceedings of the First International
Symposium, BVAI 2005, Naples, Italy, October 19–21, 2005, (Springer, Berlin), Vol.
3704, pp. 69–77.

38. Fauchald P, Tveraa T (2003) Using first-passage time in the analysis of area-restricted
search and habitat selection. Ecology 84(2):282–288.

39. Le Corre M, et al. (2008) A multi-patch use of the habitat: Testing the first-passage
time analysis on roe deer Capreolus capreolus paths. Wildl Biol 14(3):339–349.

40. Noh JD, Rieger H (2004) Random walks on complex networks. Phys Rev Lett 92(11):
118701.

41. Condamin S, Bénichou O, Tejedor V, Voituriez R, Klafter J (2007) First-passage times
in complex scale-invariant media. Nature 450(7166):77–80.

42. Buonocore A, Nobile AG, Ricciardi LM (1987) A new integral-equation for the
evaluation of 1st-passage-time probability densities. Adv Appl Probab 19(4):784–800.

43. Lo CF, Hui CH (2006) Computing the first passage time density of a time-dependent
Ornstein-Uhlenbeck process to a moving boundary. Appl Math Lett 19(12):1399–1405.

44. Peskir G, Shiryaev AN (1998) On the Brownian first-passage time over a one-sided
stochastic boundary. Theory Probab Appl 42(3):444–453.

45. Rieke F (1997) Spikes: Exploring the Neural Code (MIT, Cambridge, MA).
46. Abbott LF, Sejnowski TJ (1999) Neural Codes and Distributed Representations:

Foundations of Neural Computation (MIT, Cambridge, MA).
47. Tiesinga P, Fellous JM, Sejnowski TJ (2008) Regulation of spike timing in visual cortical

circuits. Nat Rev Neurosci 9(2):97–107.
48. Cecchi GA, et al. (2000) Noise in neurons is message dependent. Proc Natl Acad Sci

USA 97(10):5557–5561.
49. Arcas BAY, Fairhall AL, Bialek W (2001) What can a single neuron compute? Adv Neur

In 13:75–81.
50. Tiesinga PHE, Sejnowski TJ (2001) Precision of pulse-coupled networks of integrate-

and-fire neurons. Network 12(2):215–233.
51. Beierholm U, Nielsen CD, Ryge J, Alstrøm P, Kiehn O (2001) Characterization of reli-

ability of spike timing in spinal interneurons during oscillating inputs. J Neurophysiol
86(4):1858–1868.

52. Tiesinga PHE, Fellous JM, Sejnowski TJ (2002) Spike-time reliability of periodically
driven integrate-and-fire neurons. Neurocomputing 44:195–200.

53. Brette R, Guigon E (2003) Reliability of spike timing is a general property of spiking
model neurons. Neural Comput 15(2):279–308.

54. Lo CF, Chung TK (2006) First passage time problem for the Ornstein-Uhlenbeck
neuronal model. Neural Information Processing (Springer, Berlin), Vol. 4232, pp. 324–
331.

55. Buonocore A, Caputo L, Pirozzi E, Ricciardi LM (2009) On a generalized leaky
integrate-and-fire model for single neuron activity. Computer Aided Systems Theory—
Eurocast 2009 (Springer, Berlin), Vol. 5717, pp 152–158.

56. Taillefumier T, Magnasco MO (2010) A fast algorithm for the first-passage times
of Gauss-Markov processes with Hölder continuous boundaries. J Stat Phys 140(6):
1130–1156.

57. Buonocore A, Caputo L, Pirozzi E, Ricciardi LM (2010) On a stochastic leaky integrate-
and-fire neuronal model. Neural Comput 22(10):2558–2585.

58. Buonocore A, Caputo L, Pirozzi E, Ricciardi LM (2011) The first passage time problem
for Gauss-diffusion processes: Algorithmic approaches and applications to LIF neuronal
model. Methodol Comput Appl 13(1):29–57.

59. Dong Y, Mihalas S, Niebur E (2011) Improved integral equation solution for the first
passage time of leaky integrate-and-fire neurons. Neural Comput 23(2):421–434.

60. Thomas PJ (2011) A lower bound for the first passage time density of the supra-
threshold Ornstein-Uhlenbeck process. J Appl Probab 48(2):420–434.

61. Taillefumier T, Magnasco MO (2008) A Haar-like construction for the Ornstein
Uhlenbeck process. J Stat Phys 132(2):397–415.

62. Elhilali M, Fritz JB, Klein DJ, Simon JZ, Shamma SA (2004) Dynamics of precise spike
timing in primary auditory cortex. J Neurosci 24(5):1159–1172, 10.1523/JNEUROSCI.
3825-03.2004.

63. DeWeese MR, Zador AM (2006) Non-Gaussian membrane potential dynamics imply
sparse, synchronous activity in auditory cortex. J Neurosci 26(47):12206–12218.

64. Toups JV, et al. (2011) Finding the event structure of neuronal spike trains. Neural
Comput 23:1–40.

65. Destexhe A, Rudolph M, Paré D (2003) The high-conductance state of neocortical
neurons in vivo. Nat Rev Neurosci 4(9):739–751.

Taillefumier and Magnasco PNAS | Published online March 27, 2013 | E1443

A
PP

LI
ED

PH
YS

IC
A
L

SC
IE
N
CE

S
N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S


