
NEURONAL MODELING

Single-trial spike trains in parietal
cortex reveal discrete steps during
decision-making
Kenneth W. Latimer,1,2 Jacob L. Yates,1,2 Miriam L. R. Meister,2,3

Alexander C. Huk,1,2,4,5 Jonathan W. Pillow1,2,5,6*

Neurons in the macaque lateral intraparietal (LIP) area exhibit firing rates that appear to
ramp upward or downward during decision-making. These ramps are commonly assumed
to reflect the gradual accumulation of evidence toward a decision threshold. However,
the ramping in trial-averaged responses could instead arise from instantaneous jumps at
different times on different trials. We examined single-trial responses in LIP using
statistical methods for fitting and comparing latent dynamical spike-train models. We
compared models with latent spike rates governed by either continuous diffusion-to-bound
dynamics or discrete “stepping” dynamics. Roughly three-quarters of the choice-selective
neurons we recorded were better described by the stepping model. Moreover, the inferred
steps carried more information about the animal’s choice than spike counts.

R
amping responses have been observed in a
variety of brain areas during decision-
making and have been widely interpreted
as the neural implementation of evidence
accumulation for forming decisions (1–7).

However, ramping can only be observed by aver-
aging together responses from many trials (and,
often, many neurons), which obscures the dy-
namics governing responses on single trials. In
particular, a discrete “stepping” process (8, 9), in
which the spike rate jumps stochastically from
one rate to another at some time during each
trial, can also create the appearance of ramping

(10, 11). Although decision-making at the behav-
ioral level is well described as an accumulation
process (12, 13), whether the brain computes deci-
sions through a direct neural correlate (ramping)
or a discrete implementation (stepping) re-
mains a central, unresolved question in sys-
tems neuroscience.
We used advanced statistical methods to iden-

tify the single-trial dynamics governing spike
trains in the lateral intraparietal (LIP) area of
macaques performing a well-studied motion-
discrimination task (Fig. 1A) (3, 14). We formu-
lated two spike-trainmodels with stochastic latent

dynamics governing the spike rate: one defined
by continuous ramping dynamics and the other
by discrete stepping dynamics (see the supple-
mentary methods for mathematical details). In
the ramping model, also known as “diffusion-to-
bound,” the spike rate evolves according to a
Gaussian randomwalk with linear drift (Fig. 1B).
The slope of drift depends on the strength of sen-
sory evidence, and each trial’s trajectory contin-
ues until hitting an absorbing upper bound.
Alternatively, in the stepping model, the latent
spike rate jumps instantaneously from an initial
“undecided” state to one of two discrete decision
states during the trial (Fig. 1C). The probability
of stepping up or stepping down and the timing
of the step are determined by the strength of
sensory evidence. For both models, we assumed
that spiking follows an inhomogeneous Poisson
process given the time-varying spike rate.
Both latent variable models are “doubly sto-

chastic” in the sense that the probability of an
observed spike train given the sensory stimu-
lus depends on both the noisy trajectory of the
latent spike rate and the Poisson variability in
the spiking process. Fitting such latent variable
models requires integrating over all latent tra-
jectories consistentwith the observed spike trains,
which is not analytically tractable. We therefore
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Fig. 1. Motion discrimination task and spike-train models. (A) Schematic
of moving-dot direction-discrimination task. The monkey views and discrim-
inates the net direction of a motion stimulus of variable motion strength and
duration and indicates its choice by making a saccade to one of two choice
targets 500 ms after motion offset. One choice target is in the response field
of the neuron under study (RF, shaded patch on left); the other is outside it.
(B) Ramping (diffusion-to-bound) model. Spike rate trajectories (solid traces)
were sampled from a diffusion-to-bound process for each of three motion
coherences (strong positive, zero, and strong negative). The model param-
eters include an initial spike rate, a slope for each coherence, noise variance,
and an upper bound. We do not include a lower bound, consistent with the

competing integrator (race) model of LIP (5). Spike trains (below) obey an
inhomogeneous Poisson process for each spike rate trajectory. (C) Discrete
stepping model. Spike rate trajectories (above) begin at an initial rate and
jump up or down at a random time during each trial, and spike trains (below)
once again follow a Poisson process, given the latent rate.The step times take
a negative binomial distribution, which resembles the time-to-bound dis-
tribution under a diffusion model. Parameters include the spike rates for the
three discrete states and two parameters governing the distribution over step
timing and direction for each motion coherence. Both models were fit using
the spike trains and coherences for each neuron, without access to the ani-
mal’s choices.
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developed sampling-basedMarkov chainMonte
Carlo methods, which provide samples from
the posterior distribution over model parame-
ters and allow us to perform Bayesian model
comparison.
We focused on a population of 40 neurons

with highly choice-selective responses that ex-
hibited ramping in their average responses (14),
typically increasing during trials in which the
monkey eventually chose the target inside the
response field (RF) of the neuron and decreas-
ing when the monkey chose the target outside
the RF. We fit each neuron with both ramping
and stepping models, using the spike-train data
from 200ms aftermotion onset (15) until 200ms
after motion offset (300 ms before the monkey
received the “go” signal). Figure 2A shows the

raster of spike trains from an example LIP neu-
ron plotted in two different ways: first, aligned
to the time of motion stimulus onset (left); and
second, aligned to the step time inferred under
the stepping model (right). The traditional ras-
ter and peristimulus time histogram (PSTH) at
left show that the average response ramps up-
ward or downward depending on choice, as ex-
pected. The step-aligned raster at right, however,
shows that these data are also consistent with
discrete steplike transitions with variable timing
across trials. Additional panels show the distri-
bution of step times inferred under the model
(Fig. 2B), and the dependence of step direction
(up or down) on the motion signal (Fig. 2C). Dis-
crete steps in the instantaneous spike rate could
thus plausibly underlie the gradual ramping ac-

tivity seen in stimulus-aligned and averaged LIP
spike responses.
We applied the same analysis to the full set of

LIP neurons and observed similar structure in
step-aligned rasters (figs. S13 to S15). Figure 3A
shows population-averaged PSTHs computed
from stimulus-aligned (left) and step-aligned
responses, sorted by motion strength (middle),
or motion strength and step direction (right).
The middle and right plots show that spike rate
is effectively constant when spike trains are
aligned to the inferred step time on each trial.
The multiple step heights observed in the mid-
dle plot result from the fact that the proportion
of up and down steps varieswithmotion strength.
The right plot confirms that the firing rate,
once conditioned on stepping up or down, is
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Fig. 2. Model-based analysis of spike responses from an example LIP
neuron. (A) Spike rasters sorted by the monkey’s choice in or out of the RF
of the neuron under study (black, in-RF; gray, out-RF) and their associated
averages (PSTHs, below). (Left) Conventional stimulus-aligned rasters with
each trial aligned to the time of motion onset exhibit commonly observed
ramping in the PSTH. Blue and red triangles indicate the inferred time of an up
or down step on each trial under the fitted stepping model. Yellow triangles

indicate that no stepwas found during the trial and are placed at the end of the
trial segment we analyzed (200 ms after motion offset). (Right) The same
spike trains aligned to the inferred step time for each trial.The estimated step
direction of the neuron does not always match the animal’s decision on each
trial. (B) The distribution of inferred step times shown in (A) (histogram) and
the distribution over step times under the fitted parameters (black trace).
(C) The probability of an up step for each coherence level. Error bars, 95%CIs.
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Fig. 3. Stepping model captures LIP responses. (A) Population average
PSTH sorted bymotion coherence computed from spike trains: (Left) Aligned
to motion onset and sorted by motion strength. (Middle) Aligned to step
times inferred under the stepping model and sorted by motion strength.
(Right) Aligned to step times and sorted by bothmotion strength and inferred
step direction. Simulated results from the stepping model (dashed lines)
provide a close match to the real data under all types of alignment and

conditioning. (B) Quantitative model comparison using DIC reveals a superior
fit of the stepping model over the ramping model for the majority of cells
(31 out of 40). A DIC difference greater than T10 (gray region) is commonly
regarded as providing strong support for one model over the other (22).
We found substantially more cells with strong evidence for stepping over
ramping (25 cells versus 6 cells; median DIC difference = 22.1; sign test
P < 0.001).
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independent of motion strength. Furthermore,
simulated spike responses, based on the fitted
stepping models, resemble the real data under
both kinds of alignment (dashed traces).
Although these analyses provide a visually com-

pelling illustration of the plausibility of stepping
dynamics in LIP, they do not by themselves de-
finitively rule out the rampingmodel (see fig. S16).
Using our latent variable models, we can formally
address this issue using statistical model com-
parison. Both models give a probability distribu-
tion over spike trains, and the model that better
represents the data should place more probability
mass over the observed spike trains. We com-
pared the model fits using the deviance infor-
mation criterion (DIC) (16), which integrates
over the entire posterior distribution of model

parameters given the data, thereby taking into
account the uncertainty in the model fit as well
as the number of parameters in each model.
The stepping model provided a superior ac-

count of LIP responses for 78% (31 out of 40) of
the cells compared to the ramping model (Fig.
3B). The stepping model therefore not only ac-
counts for the ramplike activity observed in av-
eraged LIP responses, but its qualitative ability to
reveal step times is bolstered by quantitative su-
periority in accounting for the statistical struc-
ture of spike trains for amajority of LIP neurons.
The superiority was supported not just by DIC
but also by othermodel comparisonmetrics, such
as Bayes factors (fig. S1).
We subsequently examined how well the two

models account for the time-varying mean and

the variance of neural responses. Figure 4A shows
the comparison for themean responses (top row)
and variance (bottom row) for the data (left col-
umn), steppingmodel (middle column), and ramp-
ing model (right column). Although the models
were fit to predict the spike responses on each
trial, as opposed to these summary statistics, both
models did an acceptable job of accounting for
the mean response [fraction of variance in the
PSTHs explained: stepping R2 = 0.94, 95% cre-
dible interval (CI) (0.90, 0.94); rampingR2 = 0.78,
95% CI (0.71, 0.79)]. This is consistent with the
long-standing difficulty in distinguishing between
these two mechanisms. However, the stepping
model provided a more accurate fit to the var-
iance of neural responses [stepping R2 = 0.40,
95% CI (0.09, 0.45); ramping R2 = −0.49, 95% CI
(−0.86, −0.27)]. In particular, the stepping model
captured the decreasing variance observed in trials
with strong negative motion much better than
the ramping model. (A similar result held for es-
timates of variance of the underlying spike rate;
see fig. S21).
Finally, the stepping model provides a plat-

form for neural decoding, because the posterior
distribution over the step can be used for read-
ing out decisions from the spikes on a single
trial. We first quantified decoding performance
using choice probability (CP), a popularmetric for
quantifying the relationship between choice and
spike counts. Aligned to motion onset, CP grows
roughly linearly with time (Fig. 4B, left). How-
ever, the CP relative to the inferred step times
(Fig. 4B, right) was consistent with an abrupt
emergence of choice-related activity.We then com-
pared classical CP with a model-based CP mea-
sure, which assumed that the direction of the
neuron’s step predicted the animal’s choice. We
reiterate that themodel was fit to the spike trains
without access to the animal’s choices. Themodel-
basedCPwas on average greater than classical CP,
indicating that the states estimated under the
steppingmodel weremore informative about the
animal’s choice than raw spike counts (Fig. 4C).
In conclusion, we have developed tractable,

principled methods for fitting and comparing
statisticalmodels of single-neuron spike trains in
which spike rates are governed by a latent sto-
chastic process. We have applied these methods
to determine the dynamics underlying neural ac-
tivity in area LIP. Although neurons in this area
have been largely assumed to exhibit ramping
dynamics, reflecting the temporal accumulation
of evidence posited bymodels of decision-making,
statisticalmodel comparison supports an alterna-
tive hypothesis: LIP responses were better de-
scribed by randomly timed, discrete steps between
underlying states. [In a supplementary analysis,
we examined data from a response-time version
of the dots task and found results consistent with
the fixed duration version; this initial compari-
son will be strengthened by extending the mod-
els to account for overlapping decision and
motor events and application to larger data sets
(figs. S23 to S25) (17)]. In addition to accounting
better for the dynamics of the mean firing rates,
only the stepping model accounts accurately for
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Fig. 4. Stepping model better explains variance of responses and can be used to decode choices.
(A) Comparison of model fits to average population activity, sorted by stimulus strength. Motion co-
herence and direction are indicated by color (blue, in-RF; red, out-RF). Average spike rate (top) and spike
count variance (bottom) for the population aligned to motion onset.The data (left) and simulations from
the stepping model (center) and the diffusion-to-bound model (right) fits to all 40 cells are shown. Spike
rates and variances were calculated with a 25-ms sliding window. (B) Population average CP aligned to
stimulus onset (left) and average CPaligned to estimated step times (right). Gray region indicatesmean T

1 SEM. CPs were calculated with a sliding 25-ms window. Conventional alignment suggests a ramp in
choice selectivity, and the model-based alignment indicates a rapid transition. (C) Conventional CP based
on spike counts using responses 200 to 700 ms after motion onset versus model-based CP using the
probability of stepping to the up state by the end of the same period. Model-based CP is greater than
conventional CP in the population (Wilcoxon signed rank test; P < 0.05). Stepping models were fit using
10-fold cross-validation. Error bars show mean T 1 SE of CPs, as computed on each training data set.
Black points indicate cells with significant differences between model-based and conventional CP
(Student’s t test; P < 0.05), and gray indicates that differences were not significant.
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the variance of neural responses. Finally, the
estimation of single-trial step times provides a
novel view of choice-related activity, revealing
that choice-correlated fluctuations in response
are also dominated by discrete steplike dynamics.
Although these results challenge the canonical

perspective of LIP dynamics during decision-
making, the approach facilitates new avenues of
investigation. Our analyses suggest that accumu-
lation may be implemented by stochastic steps,
but simultaneous recordings ofmultiple neurons
will be required to investigate whether popula-
tion activity ramps or discretely transitions be-
tween states on single trials (8); population-level
ramping could still be implemented via step
times that vary across neurons, even on the same
trial. Fortunately, the statistical techniques re-
ported here are scalable to simultaneously re-
corded samples of multiple neurons, and newer
recording techniques are starting to yield these
multineuron data sets (18–21). It is also possible
that single neurons with ramping dynamics im-
plement evidence integration elsewhere in the
brain and that LIP neurons are postdecisional or
premotor indicators of the binary result of this
computation. More generally, we believe that
these techniques will have broad applicability for
identifying and interpreting the latent factors
governing multineuron spike responses, allowing
for principled tests of the dynamics governing
cognitive computations in many brain areas.
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PROTEIN STRUCTURE

Crystal structure of a mycobacterial
Insig homolog provides insight into
how these sensors monitor sterol levels
Ruobing Ren,1,2,3* Xinhui Zhou,1,2,3* Yuan He,1,2,3 Meng Ke,1,2,3 Jianping Wu,1,2,3

Xiaohui Liu,4 Chuangye Yan,1,2,3 Yixuan Wu,1,2,3 Xin Gong,1,2,3 Xiaoguang Lei,4

S. Frank Yan,5 Arun Radhakrishnan,6 Nieng Yan1,2,3†

Insulin-induced gene 1 (Insig-1) and Insig-2 are endoplasmic reticulum membrane–embedded
sterol sensors that regulate the cellular accumulation of sterols. Despite their physiological
importance, the structural information on Insigs remains limited. Here we report the
high-resolution structures of MvINS, an Insig homolog from Mycobacterium vanbaalenii.
MvINS exists as a homotrimer. Each protomer comprises six transmembrane segments
(TMs), with TM3 and TM4 contributing to homotrimerization. The six TMs enclose a
V-shaped cavity that can accommodate a diacylglycerol molecule. A homology-based
structural model of human Insig-2, together with biochemical characterizations, suggest
that the central cavity of Insig-2 accommodates 25-hydroxycholesterol, whereas TM3
and TM4 engage in Scap binding. These analyses provide an important framework for
further functional and mechanistic understanding of Insig proteins and the sterol
regulatory element–binding protein pathway.

C
holesterol homeostasis is essential for hu-
man physiology. Aberrant accumulation
of sterols contributes to the initiation and
progression of atherosclerosis that can
lead to heart attack and stroke (1). Cellular

sterol levels are monitored by several membrane-
embedded proteins, including insulin-induced
gene 1 (Insig-1) and Insig-2, which are essential
components of the sterol regulatory element–
binding protein (SREBP) pathway that controls
cellular lipid homeostasis through a feedback
inhibition mechanism (2–5).
SREBPs are a family of membrane-anchored

transcription factors that activate genes encod-

ing low-density lipoprotein receptor and en-
zymes for sterol synthesis (6–8). SREBP forms a
stable complex with SREBP cleavage-activating
protein (Scap) through their respective C do-
mains (9–13). The complex is anchored on the
endoplasmic reticulum (ER) through interac-
tions between the membranous domain of Scap
and Insig-1/-2 in a sterol-dependent manner
(14, 15). Upon cholesterol deprivation, Scap dis-
sociates from Insig-1/-2 and associates with
COPII, which translocates the SREBP-Scap com-
plex from the ER to the Golgi (16, 17). In the
lumen of the Golgi, SREBP is cleaved by the
membrane-anchored site-1 protease (S1P) and
then by the intramembrane site-2 protease (S2P)
(18, 19), allowing its soluble N-terminal transcrip-
tion factor domain to enter the nucleus for gene
activation (20–23).
Insig-1/-2 negatively regulate the cellular

accumulation of sterols, mainly through two dis-
tinct mechanisms. First, upon binding to 25-
hydroxycholesterol (25HC), Insig-1/-2 inhibit the
exit of the SREBP-Scap complex from the ER,
hence preventing transcriptional activation of
genes for cholesterol synthesis and uptake (24).
Second, during sterol repletion, Insig-1 recruits
the protein degradation machinery to quickly
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integration dynamics.
motion-discrimination task. LIP spike trains in most cells involved discrete stepping dynamics rather than slow evidence
discrete changes in the animal's decision state. They recorded from LIP neurons in macaque monkeys performing a 

 hypothesized that neurons instead exhibit rapid steps or jumps in their firing rate, reflectinget al.or another. Latimer 
model to explain neuronal firing in LIP assumes that neurons slowly accumulate sensory evidence in favor of one choice 

A brain region called the lateral intraparietal (LIP) area is involved in primate decision-making. The dominant
A better way to explain neuronal activity
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