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SUMMARY

Previous work has hinted that prospective and retro-
spective coding modes exist in hippocampus. Pro-
spective coding is believed to reflect memory
retrieval processes, whereas retrospective coding
is thought to be important for memory encoding.
Here, we show in rats that separate prospective
and retrospective modes exist in hippocampal sub-
field CA1 and that slow and fast gamma rhythms
differentially coordinate place cells during the two
modes. Slow gamma power and phase locking of
spikes increased during prospective coding; fast
gamma power and phase locking increased during
retrospective coding. Additionally, slow gamma
spikes occurred earlier in place fields than fast
gamma spikes, and cell ensembles retrieved up-
coming positions during slow gamma and encoded
past positions during fast gamma. These results
imply that alternating slow and fast gamma states
allow the hippocampus to switch between pro-
spective and retrospective modes, possibly to pre-
vent interference between memory retrieval and
encoding.

INTRODUCTION

Place cells are neurons in the hippocampus that fire selectively in

specific locations in space that are called ‘‘place fields’’ (O’Keefe

and Dostrovsky, 1971; O’Keefe, 1976). Place cells do not code

spatial location uniformly on all traversals through their place

fields. Spikes from individual place cells are often ‘‘misaligned’’

with respect to their average place field (Muller and Kubie,

1989; Battaglia et al., 2004). Place field shifts in the direction

opposite to the animal’s direction of motion have been termed

‘‘prospective’’ firing events, and forward shifts in the same direc-

tion as the rat’s motion have been termed ‘‘retrospective’’ firing

events (Battaglia et al., 2004). Analogous prospective and retro-

spective firing properties have been observed in grid cells in the

medial entorhinal cortex (MEC) (De Almeida et al., 2012). In grid

cells, prospective and retrospective coding events have been

shown to be coordinated across simultaneously active cells,
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suggesting that these events reflect different information pro-

cessing modes in the entorhinal network. The prospective

mode may reflect retrieval of stored information, whereas the

retrospective mode may serve as a short-term memory buffer

that facilitates memory encoding (De Almeida et al., 2012).

Considering that prospective and retrospective firing occurs in

individual place cells (Muller and Kubie, 1989; Battaglia et al.,

2004), it is possible that prospective and retrospective network

modes also exist in the hippocampus. In support of this idea, en-

sembles of place cells represent upcoming positions at some

times (Gupta et al., 2012) and represent recent positions at other

times (Barbieri et al., 2005; Gupta et al., 2012). If such modes

exist in the hippocampal network, a mechanism must exist to

ensure that simultaneously active cells carry out the same type

of coding at the same time.

One possibility is that gamma rhythms provide a mechanism

for coordinating simultaneously active cells during prospective

and retrospective coding. Gamma rhythms are thought to coor-

dinate neuronal ensembles by synchronizing the activity of cells

that code related information (Bragin et al., 1995; Harris et al.,

2003; Fries, 2009; Colgin andMoser, 2010). Additionally, gamma

rhythms split into distinct fast and slow subtypes that differen-

tially route separate streams of information (Colgin et al.,

2009). Fast gamma couples the hippocampus with inputs from

MEC, which convey information about current spatial location

(Brun et al., 2002; Fyhn et al., 2004; Hafting et al., 2005) that is

necessary for new memory encoding (Brun et al., 2008). Slow

gamma rhythms link hippocampal subfield CA1 to inputs from

CA3 that appear to play a role in memory retrieval (Brun et al.,

2002; Sutherland et al., 1983; Steffenach et al., 2002). Addition-

ally, slow and fast gamma emerge on different phases of the

theta rhythms with which they co-occur (Colgin et al., 2009),

and encoding and retrieval processes operate most effectively

when separated on different phases of theta (Hasselmo et al.,

2002). These distinct fast and slow gamma subtypes have also

recently been shown to be associated with different behavioral

strategies in a spatial memory task (Cabral et al., 2014).

If fast gamma rhythms regulate the hippocampal network

during spatial memory encoding, then fast gamma would be ex-

pected to coordinate cell ensembles during retrospective cod-

ing. If slow gamma rhythms reflect a memory retrieval mode,

then slow gamma would be expected to coordinate cell ensem-

bles during prospective coding. We tested these hypotheses by

recording the activity of ensembles of place cells in the hippo-

campus of rats running on a linear track. We found that CA1
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Figure 1. Prospective and Retrospective Coding Modes in CA1

Place Cells

(A) Individual spike positions for an example CA1 place cell recorded in a rat

running on a linear track. Successive laps in the rightward direction are shown

for an�10min session. Themean field position across all laps is indicated with

a vertical dashed line. Passes through a place field were classified as ‘‘pro-

spective’’ (black circles) if greater than or equal to two-thirds of spikes were in

the first half of the field and ‘‘retrospective’’ (gray circles) if greater than or equal

to two-thirds of spikes were in the second half of the field. Passes that did not

fall under either of these definitions were classified as ambiguous (white cir-

cles). See also Figure S1.

(B) Prospective and retrospective coding occur more often than expected by

chance. The proportion of runs showing some type of coding (i.e., either

prospective or retrospective, not ambiguous) is shown. A greater proportion of

runs exhibit some type of coding mode, either prospective or retrospective, in

the actual data compared to shuffled data, in which a larger number of

ambiguous runs occur.
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place cells preferentially represent recent locations during fast

gamma rhythms and upcoming locations during slow gamma

rhythms. These findings provide evidence that fast and slow

gamma rhythms reflect different spatial memory processing

modes in the hippocampal network.

RESULTS

To investigate whether spatial coding differs during slow and fast

gamma rhythms, we recorded neuronal ensembles from the dor-

sal hippocampus in a group of five rats that ran stereotyped

paths on a linear track. We first characterized spatial coding in

692 CA1 place cells. We followed a theoretical framework that

has been proposed previously (Battaglia et al., 2004; De Almeida

et al., 2012). In this framework, prospective coding is defined to

occur when a place cell’s firing peak is in the first half of the place

field, and retrospective coding is defined to occur when the cell

mainly fires in the second half of the field (Figure 1A). We

observed prospective and retrospective coding modes signifi-

cantly more often in the experimental data than in surrogate

data in which spikes were randomly shuffled across runs

(c2(1) = 56.826, p < 0.0001; Figure 1B), indicating that coding

modes were not merely a random process. Classification of pro-

spective and retrospective coding modes was not affected by

inhomogeneous spatial sampling across place fields that overlap

with the ends of the track because such fields were excluded

from analyses (see Supplemental Experimental Procedures).

Retrospective and prospective coding events did not reflect po-

sition tracking errors because no differences in tracked areas

from raw video recordings were observed between prospective,

retrospective, and ambiguous events (Figure S1A available

online). Previous findings have shown that place cells code loca-

tions ahead of an animal’s actual location when the animal is

leaving a reward site and represent locations behind the actual

location when the animal is approaching a reward site (Gupta

et al., 2012). Consistent with these previous results, we found

that prospective coding events tended to occur when rats

were leaving a reward location (i.e., the ends of the track),

whereas retrospective coding events tended to occur as rats

approached a reward location (Figure S1B).

We next investigated whether the occurrence of prospective

and retrospective coding modes was correlated across different

cells, as has been shown for grid cells in MEC (De Almeida et al.,

2012). We found that pairs of cells were likely to exhibit the same

type of coding when the time interval between traversals through

the cells’ place field centers was relatively short. When two cells

firedwithin timewindows of less than 800ms, cell pairs exhibited

the same type of coding significantly more often than they ex-

hibited different types of coding (Figure 1C; c2(1) = 15.5, p =

0.0001 for t = 0–200 ms; c2(1) = 10.3, p = 0.001 for t = 200–

400 ms; c2(1) = 22.8, p = 0.0001 for t = 400–600 ms; c2(1) =

6.3, p = 0.01 for t = 600–800 ms). This indicates that the majority

of cells that are active at the same time engage in the same

type of coding, either prospective or retrospective, and that
(C) Prospective and retrospective coding events were detected for all re-

corded CA1 place cells. Successive coding events from place cell pairs were

likely to be of the same type if they occurred closely in time (i.e., <0.8 s).

Neuron 82, 670–681, May 7, 2014 ª2014 Elsevier Inc. 671
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Figure 2. Slow and Fast Gamma during Pro-

spective and Retrospective Coding in CA1

(A) Example LFP recordings from CA1 stratum

pyramidale are shown with corresponding spikes

from an example place cell (orange vertical lines,

same place cell as shown in Figure 1A). Slow

gamma during a prospective coding event is

shown above, and fast gamma during a retro-

spective coding event is shown below (calibration:

100ms, 0.2mV). The top recording corresponds to

one of the prospective coding events shown in

Figure 1A (fifth row from the bottom), and the

bottom recording corresponds to a retrospective

coding event in Figure 1A (fifth row from the top).

(B) Slow (blue) and fast (red) gamma power in CA1

during prospective and retrospective coding

events. Power is plotted as the percent change

(mean ± SEM) relative to power during ambiguous

runs (see Figure S2A). Slow gamma power was

higher during prospective coding than during

retrospective coding. Fast gamma power was

greater for retrospective coding compared to

prospective coding.

(C) Phase locking of interneuron spike times

(mean ± SEM) to slow and fast gamma during

prospective and retrospective coding events.

Slow gamma phase locking was greater during

prospective coding than during retrospective

coding. Fast gamma phase locking was greater

during retrospective coding than during prospec-

tive coding. See also Figure S2B.

Neuron

Slow and Fast Gamma Coordinate Place Cell Coding
prospective and retrospective coding modes are coordinated

across the CA1 network. The timescale of this coordination is

similar to the timescale of switching between slow and fast

gamma states in the hippocampus (Colgin et al., 2009). More-

over, local field potentials (LFPs) should reflect activity in thema-

jority of neurons that show coordinated codingmore than activity

in the minority of neurons that do not show coordinated coding.

Therefore, we set out to examine the hypothesis that slow and

fast gamma rhythms coordinate place cells during prospective

and retrospective coding at the level of single units and cell

ensembles.
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Prospective and Retrospective
Coding in Single Units during Slow
and Fast Gamma
To investigate whether slow and fast

gamma rhythms coordinate single-unit

firing during prospective and retrospec-

tive coding, we first quantified the power

of slow and fast gamma rhythms in CA1

stratum pyramidale during prospective

and retrospective events in individual

cells (Figures 2A and 2B). We found that

slow and fast gamma power were differ-

entially enhanced depending on the type

of coding that was occurring (interaction

between gamma type and coding type:

two-way repeated-measures ANOVA,

F(1, 3,642) = 20.0, p = 0.0001). Slow
gamma power was significantly higher during prospective cod-

ing modes than retrospective coding modes (t(3,642) = 2.1, p =

0.04). In contrast, fast gamma power was significantly higher

during retrospective coding events (prospective versus retro-

spective: t(3,642) = 3.5, p = 0.0004). These differential effects

of prospective and retrospective coding on slow and fast gamma

power are consistent with the hypothesis that slow and fast

gamma coordinate cells during prospective and retrospective

coding, respectively. Interestingly, a significant main effect of

gamma type was also found (F(1, 3,642) = 1,477.1, p =

0.0001), indicating that fast gamma power increases during
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Figure 3. Place Fields Constructed from

Spikes Emitted during Slow and Fast

Gamma Periods in CA1

(A) Rate maps constructed for spikes occurring

during slow and fast gamma for an example CA1

place cell from a rat running in the rightward di-

rection.

(B) Spike counts across position combined for all

spikes from all cells, subsampled for nonover-

lapping slow and fast gamma periods. Spike

counts were normalized according to each cell’s

maximum, and the x axis shows normalized po-

sition within each cell’s place field (ranging from

0 to 1). Leftward runs were reversed so that place fields from runs in both directions could be combined, such that animals were running from position =

0 to position = 1 in all cases. See also Figure S3.

(C) Center of mass (COM) deviations (mean ± SEM) for place fields subsampled for nonoverlapping slow and fast gamma periods. Zero represents the place

field COM for all spikes. Place field COMs were shifted significantly forward during fast gamma compared to place field COMs during slow gamma.
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retrospective coding were significantly greater than slow gamma

power increases during prospective coding. This may suggest

that many place cells become synchronized by fast gamma dur-

ing retrospective coding, while perhaps amore limited number of

place cells get recruited by slow gamma during prospective

coding.

‘‘Ambiguous’’ runs are runs in which approximately equal

numbers of spikes occurred in the first and second halves of

the place field. Such runs could reflect a switch from prospective

to retrospective coding as the rat passed through the field. We

thus analyzed whether slow and fast gamma power changed be-

tween the first and second halves of place fields during ambig-

uous runs. We found that slow gamma power was significantly

greater in the first half of place fields than in the second half

(two-tailed paired t test: t(4,417) = 2.65, p = 0.01; Figure S2A).

However, no difference in fast gamma power was observed be-

tween the first and second halves of place fields (t(4,417) =

�0.34, p = 0.7). These findings imply that slow gamma in ambig-

uous runsmay be slightly stronger during the early component of

a cell’s place field compared to the later component. However,

fast gamma occurs evenly in both the initial and late parts of a

place field when spikes occur across the entire field.

CA1 gamma rhythms reflect rhythmic inhibitory potentials in

pyramidal neurons produced by rhythmic firing of GABAergic in-

terneurons (Soltesz and Deschênes, 1993; Penttonen et al.,

1998). We investigated whether putative interneurons exhibited

slow gamma rhythmic firing during prospective coding and fast

gamma rhythmic firing during retrospective coding.We analyzed

slow and fast gamma phase locking in 201 putative interneurons

in CA1 that were recorded simultaneously with CA1 place cells.

We found that the degree of gamma phase locking seen in inter-

neurons during prospective and retrospective coding events

was different for slow and fast gamma rhythms (Figure 2C; inter-

action between gamma type and coding type: two-way

repeated-measures ANOVA, F(1, 502) = 12.2, p = 0.001). Inter-

neurons were significantly more phase locked to slow gamma

rhythms during prospective coding (prospective versus retro-

spective: t(502) = 2.0, p = 0.05) and fast gamma rhythms during

retrospective coding (prospective versus retrospective: t(502) =

1.9, p = 0.05; Figure S2B). Analogous results were not obtained

for individual place cells. Because of the low firing rate of place

cells compared to interneurons, the low number of spikes re-
maining after selection of spikes during periods of prospective

or retrospective coding probably prevented effective detection

of phase locking. Moreover, previous work indicated that spikes

occurring during slow and fast gamma periods must first be

selected in order to reliably detect slow and fast gamma phase

locking in place cells (Colgin et al., 2009). This is because slow

and fast gamma rhythms are not stationary across time (i.e.,

not continuously present), and thus many phase estimates are

meaningless if slow and fast gamma are not preselected (Colgin

et al., 2009). Preselection of slow and fast gamma spikes was not

possible in this analysis because spikes were selected for each

place field traversal (i.e., for prospective and retrospective

coding events), not according to the presence of slow or fast

gamma.

The above results raise the possibility that spatial representa-

tions in place cells differ during slow and fast gamma states. We

investigated this possibility by comparing place fields during

slow and fast gamma.We found that the center of mass for place

fields during slow gamma was shifted 1.2 ± 9.4 cm before the

overall place field center (i.e., the center of mass of the place field

constructed from all spikes). The center of mass for fast gamma-

associated place fields was shifted 0.3 ± 5.5 cm after the overall

place field center (fast gamma center of mass after slow gamma

center of mass: t(368) = 1.9, p = 0.05; Figures 3 and S3). The

backward shift observed during slow gamma is reminiscent of

the backward shift that CA1 place fields develop within the first

few track laps each day (Mehta et al., 1997, 2000; Lee et al.,

2004). Consistent with this earlier research, few prospective

coding events were observed during the first minute on the track

each day (Figure 4A). However, the probability of observing

slow gamma was high during this same time period (Figure 4B),

which was surprising considering that increases in slow gamma

power were associated with prospective coding when all laps

across all recording sessions were analyzed (Figure 2B; see

Discussion).

Theta Phase Precession during Periods of Slow and Fast
Gamma
The above results indicate that place cells tend to code up-

coming places during slow gamma and recent places during

fast gamma. Place cell spikes occur on earlier and earlier

phases of theta as a rat progresses through a cell’s place field
Neuron 82, 670–681, May 7, 2014 ª2014 Elsevier Inc. 673
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Figure 4. Time Course of Slow and Fast Gamma Episodes and Pro-

spective and Retrospective Coding Events in CA1

(A) The mean (±SEM) distribution of ambiguous, retrospective, and prospec-

tive coding events during the first 10 min session of each day is shown.

(B) The mean (±SEM) probability of detecting slow and fast gamma episodes

across the first 10 min recording session for each day is shown.
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in a phenomenon termed ‘‘theta phase precession’’ (O’Keefe

and Recce, 1993; Skaggs et al., 1996). Theta phase precession

has been proposed to represent a prospective network mode

involving the cued retrieval of upcoming places (Tsodyks

et al., 1996; Jensen and Lisman, 1996, 2005; Lisman and Re-

dish, 2009), as well as a mechanism for compressing spatial

sequences into a temporal structure that is ideal for memory

encoding (Skaggs et al., 1996). We examined the relationship

between theta phase and position for spikes emitted during pe-

riods of slow and fast gamma and combined the data across all

place cells and all animals (Figure 5). As expected, normal theta

phase precession was observed when all spikes were included

(Figure 5A). Remarkably, we found that slow gamma spikes did

not tend to occur across the full range of theta phases and po-

sitions within the place field but instead tended to be restricted

to late theta phases and early portions of the place field (Fig-

ure 5B). On the other hand, spikes emitted during fast gamma

periods occurred across all positions and displayed theta

phase precession (Figure 5C). Theta phase distributions during

slow gamma periods and fast gamma periods were signifi-

cantly different when all phases were considered (Watson-

Williams test, F(1, 80,725) = 123.7, p = 0.0001) and when

data were randomly downsampled such that each cell had an

equal number of phase estimates during slow and fast gamma

periods (Watson-Williams test, F(1, 35,563) = 59.9, p = 0.0001).

Moreover, the correlation between phase and position differed

depending on whether slow or fast gamma was present (F(2,

2,004) = 15.6, p = 0.0001) and was significantly higher for pe-

riods of fast gamma compared to periods of slow gamma

(t(1,192) = 3.2, p = 0.002). These differences again remained

significant when data were randomly downsampled such that

each cell had an equal number of theta phase estimates for

slow and fast gamma (F(2, 948) = 13.0, p = 0.0001; correlation

between phase and position greater for fast gamma compared

to slow gamma: t(474) = 3.4, p = 0.001). These effects did not

appear to be due to discrepancies in theta phase estimation

resulting from theta power and frequency differences between

track positions associated with slow and fast gamma

(Figure S4).
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Controlling for Other Factors, Such as Running Speed
Were differences in spatial coding during slow and fast gamma

simply a side effect of the relationship between running speed

and gamma frequency (Ahmed and Mehta, 2012)? This is un-

likely for several reasons. Running speeds on the linear track

follow a stereotypical pattern in well-trained rats: rats begin

each lap slowly, reach maximal speed in the middle of the track,

and then slow down again before reaching the other end (Fig-

ure S4B). If slow and fast gamma effects merely reflected

changes in running speed, we would expect to observe slow

gamma at the ends of the track and fast gamma in the center

of the track. In contrast, we found that both slow and fast gamma

tended to occur near the ends and in the middle of the track (Fig-

ure S4B). Additionally, we accounted for running speed using a

general linear model with gamma power as a repeated factor

and running speed as a covariate. Accounting for the interaction

between gamma type and running speed, and accounting for

running speed, we found that the interaction between gamma

type and coding type remained significant (F(1, 3,641) =

24.891, p < 0.0001). Lastly, we matched prospective and retro-

spective coding events according to running speed and found

that the slow and fast gamma effects persisted. Specifically, a

significant interaction between coding type and gamma type

was again observed (F(1, 3,446) = 25.508, p < 0.0001). Post

hoc testing showed that slow gamma during prospective coding

exhibited greater power than during retrospective coding

(t(1,723) =�2.00, p = 0.05), and fast gamma exhibited higher po-

wer for retrospective coding compared to prospective coding

(t(1,723) = 4.34, p < 0.0001). Our results were also not explained

by differences due to track location because effects remained

significant when the location of each coding event was included

as a covariate (gamma type by coding type interaction:

F(1, 3,641) = 22.88, p < 0.0001) and when data were randomly

downsampled such that each location exhibited equivalent

amounts of each coding type (F(1, 2,536) = 11.88, p < 0.001).

Spatial Coding at the Ensemble Level during Slow and
Fast Gamma
The above results imply that slow and fast gamma rhythms coor-

dinate prospective and retrospective coding, respectively, in

place cells. Yet, the above results were obtained from isolated

single units and did not directly address the question of whether

slow and fast gamma rhythms coordinate spatial coding at the

network level. To address this question, we detected theta

cycles containing sequences of active place cells (‘‘theta se-

quences’’) and employed Bayesian decoding (Brown et al.,

1998; Zhang et al., 1998; Jensen and Lisman, 2000) to estimate

the spatial trajectory represented by the spikes in each theta

sequence (as in Gupta et al., 2012). We then measured the pre-

diction error (i.e., predicted position – actual position) for theta

sequences associated with slow and fast gamma. We found

that prediction errors during slow and fast gamma were signifi-

cantly different (t(511) = 2.1, p = 0.04; Figure 6), with slow gamma

associated with positive prediction errors (3.1 ± 50.2 cm) and

fast gamma associated with negative prediction errors (�4.5 ±

28.8 cm). We then compared slow and fast gamma during theta

sequences having cumulative prediction errors less than or

greater than zero and found significantly greater fast gamma
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Figure 5. Theta Phase Precession during Slow and Fast Gamma

Periods in CA1

For each panel, normalized position within the place field is plotted on the x

axis, and the theta phase at which each spike occurred is plotted on the y axis.

(A) Theta phase precession is depicted for all spikes.

(B) The relationship between theta phase and position is shown during periods

of slow gamma. Note how spikes primarily occur in the first half of the place

field.

(C) The relationship between theta phase and position is shown during periods

of fast gamma. Spikes occur across the full range of positions and theta
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power for negative prediction errors (t(51,648) = �10.6, p <

0.0001). We found a trend toward higher slow gamma power

for positive prediction errors compared to negative prediction er-

rors (t(51,648) = 1.7, p = 0.09). However, when we omitted theta

cycles with prediction errors close to 0 cm and examined those

theta cycles with prediction errors greater than 1 cm or less than

1 cm, slow gamma power was significantly higher for positive er-

rors compared to negative errors (t(49,216) = 2.1, p = 0.04) and,

again, fast gamma power was significantly greater for negative

errors than for positive errors (t(49,216) = �10.5, p < 0.0001).

The slow gamma effect became more pronounced when only

those theta cycles with prediction errors greater than or less

than 2 cm were considered (slow gamma power significantly

higher for positive errors than negative errors: t(46,127) = 2.5,

p = 0.01; fast gamma power significantly higher for negative

errors than positive errors: t(46,127) =�10.1, p < 0.0001). Exam-

ples of theta sequences showing positive and negative predic-

tion errors associated with slow and fast gamma, respectively,

are shown in Figure 7. Note how theta sequences associated

with positive prediction errors (i.e., predicted position ahead of

the actual position; Figure 7A) resemble ‘‘ahead sequences’’

that have been reported previously by Gupta and colleagues

(2012) to occur predominantly as animals leave reward sites.

Such sequences may be related to sequences that reactivate

during sharp waves (Figure S5). On the other hand, theta se-

quences that are associated with negative prediction errors

(i.e., predicted position behind the actual position, Figure 7B)

match ‘‘behind sequences,’’ which have been reported to occur

as animals approach reward sites (Gupta et al., 2012). In the cur-

rent study, reward sites were located at the ends of the track.

The present data are consistent with the findings of Gupta and

colleagues because positive prediction errors tended to occur

(Figure 8A), and slow gamma occurred more often than fast

gamma (Figure 8B), as rats left the end of the track. On the other

hand, as rats approached the end of the track, negative predic-

tion errors were more prevalent, and fast gamma occurred more

often than slow gamma.

Theta Modulation of Slow and Fast Gamma
Earlier findings indicated that both slow and fast gamma are

modulated by theta phase but tend to occur on different theta

phases and cycles (Colgin et al., 2009). Consistent with these

earlier findings, plotting gamma power within individual theta

cycles revealed theta phase locked slow gamma as rats

began a track run and theta phase locked fast gamma as

rats ended a track run (Figure S6). Moreover, slow gamma

was most strongly phase locked to theta during prospective

coding events (mean vector length [MVL] = 0.035) compared

to retrospective coding events (MVL = 0.002) and ambiguous

events (MVL = 0.022). On the other hand, fast gamma ex-

hibited strongest phase locking to theta during retrospective

events (MVL = 0.025) compared to prospective (MVL =

0.011) and ambiguous (MVL = 0.012) events. These results

suggest that the phenomena reported above involve
phases. Note that spike counts in (B) and (C) do not sum to spike counts in (A)

because (A) also includes periods when neither fast nor slow gamma was

detected. See also Figure S4.
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Figure 6. Reconstruction Errors during Periods of Slow and Fast

Gamma in CA1

Reconstruction, or prediction, errors are defined as the difference between the

position estimated by Bayesian decoding and the animal’s actual position.

Prediction errors (mean ± SEM) were negative on average during fast gamma

and positive on average during slow gamma. Negative prediction errors indi-

cate that the decoded position is behind the actual position, whereas positive

prediction errors indicate that the decoded position is ahead of the actual

position. See Figure S7 for example place cell recording sites used in Bayesian

decoding analyses.

Neuron

Slow and Fast Gamma Coordinate Place Cell Coding
theta-modulated slow and fast gamma rather than slow and

fast gamma in isolation.

DISCUSSION

The present results suggest that distributed place cells partici-

pate in distinct network processing modes that alternate ac-

cording to whether slow and fast gamma rhythms are present.

The results indicate that the slow and fast gamma modes coor-

dinate place cell assemblies during prediction of upcoming

locations and encoding of recent locations, respectively. Simi-

larly, alternating prospective and retrospective modes have

been reported in entorhinal cortex grid cells (De Almeida

et al., 2012), but they were not linked to any type of oscillation.

These prospective and retrospective coding modes are

believed to reflect distinct memory processing states in the

entorhinal-hippocampal network. Prospective coding is remi-

niscent of the backward expansion of CA1 place fields that de-

velops with experience (Mehta et al., 1997, 2000; Lee et al.,

2004). Development of such expansion is blocked by NMDA re-

ceptor antagonists (Ekstrom et al., 2001), which also block

spatial learning (Morris et al., 1986). For these reasons, this

expansion is believed to reflect the retrieval of spatial represen-

tations that formed during earlier experiences. Retrospective

coding may be driven by persistent firing in entorhinal cortex

neurons (Klink and Alonso, 1997; Yoshida et al., 2008; Hahn

et al., 2012), which may be involved in short-term memory en-

coding (Suzuki et al., 1997).

It should be noted that the present work uses the terms ‘‘pro-

spective coding’’ and ‘‘retrospective coding’’ to describe repre-
676 Neuron 82, 670–681, May 7, 2014 ª2014 Elsevier Inc.
sentations of locations at the spatial scale of individual place

fields, following the terminology used in earlier studies of similar

phenomena (Muller and Kubie, 1989; Battaglia et al., 2004; De

Almeida et al., 2012). However, the same ‘‘prospective’’ and

‘‘retrospective’’ terminology has been used to refer to place

cell coding at a larger spatial scale (Ferbinteanu and Shapiro,

2003). The Ferbinteanu and Shapiro study defined prospective

coding as place cell firing rate changes that signal which way a

rat is headed and retrospective coding as firing rate changes

that indicate from which direction the rat has come. The present

findings do not address the question of whether gamma rhythms

are involved in these phenomena.

In the present study, prospective and retrospective coding

events tended to occur at the beginning and end, respectively,

of the linear track, consistent with findings reported by Gupta

and colleagues (2012). However, the present findings addition-

ally show that prospective and retrospective coding events

were associated with the occurrence of slow and fast gamma,

respectively. Prospective firing in CA1 has been proposed to

be triggered in part by temporal context information from CA3

(Hasselmo and Eichenbaum, 2005). Prospective ‘‘sweep ahead’’

events have been observed in CA3 place cells at choice points

on a T-maze, locations where�40 Hz gamma (i.e., slow gamma)

also prominently occurred (Johnson and Redish, 2007). These

findings suggest that slow gamma coordination of place cells

during prospective coding facilitates retrieval of representations

of future locations in the hippocampal network. A previous study

linked gamma coherence between CA3 and CA1 to memory

retrieval but did not discriminate between slow and fast variants

of gamma (Montgomery and Buzsáki, 2007). The CA3-CA1

coupling they observed, however, most likely involved slow

gamma considering that CA3-CA1 coherence has been reported

to be maximal in the slow gamma range (Colgin et al., 2009).

Moreover, slow gamma has been proposed to mediate memory

retrieval during sharp wave-associated replay in quiescent

behavioral states (Carr et al., 2012; Figure S5).

If slow gamma-mediated prospective coding is related to

retrieval of learned locations, as we propose, then it should be

related to the backward shifts of place fields that develop with

experience (Mehta et al., 1997, 2000; Lee et al., 2004). Consis-

tent with this, we observed few prospective events in CA1 during

the first 30 s on the linear track each day (Figure 4A). However,

we also observed that the probability of slow gamma occurrence

was high during this time (Figure 4B), which seems to contradict

our results linking slow gamma with prospective coding. Differ-

ences between CA3 and CA1 may provide a possible explana-

tion for this paradox. In a well-learned environment, CA1 place

fields shift backward over the course of the first few laps of

each day, but stable spatial representations emerge immediately

in CA3 (Lee et al., 2004; Roth et al., 2012). This suggests that CA3

maintains long-termmemories of spatial locations and that these

memories are transmitted to CA1 during the first few laps of each

day. Slow gammamay occur during the first few laps of each day

as stored spatial memories are reactivated in CA3, but emer-

gence of these memories in CA1 may follow a slower time

course. CA1 cells may not respond to slow gamma-mediated in-

puts from CA3 until after CA3-CA1 synapses have undergone

NMDA receptor-dependent synaptic strengthening that occurs
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Figure 7. Examples of Reconstructed Positions from Theta Cycles Showing Slow or Fast Gamma
Top: Bayesian decoded spatial probability distributions for example theta cycles (raw traces shown in middle panels); the gray line indicates the rat’s actual

position. Rats were running from 0 to 200 cm. Bottom: color-coded power across time (x axis) for the range of gamma frequencies (y axis).

(A) Examples showing positive prediction errors associated with slow gamma.

(B) Examples showing negative prediction errors associated with fast gamma. See also Figure S5.
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during this time (Ekstrom et al., 2001). This could explain why few

prospective coding events were seen in CA1 during the first few

laps of each day.

Here, we posit that prospective coding relies on slow gamma

coupling of CA1 and CA3 during retrieval of stored memory rep-

resentations. Yet, this does not explain prospective coding in

grid cells (De Almeida et al., 2012). It is possible that grid cell rep-
resentations of upcoming locations are inherited from CA1,

considering that CA1 projects to MEC layer V (Swanson and

Cowan, 1977), which projects to layers II and III (van Haeften

et al., 2003). However, this remains an interesting question for

later study.

Our findings also provide insights regarding the functional sig-

nificance of theta phase precession (O’Keefe and Recce, 1993;
Neuron 82, 670–681, May 7, 2014 ª2014 Elsevier Inc. 677
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Figure 8. Negative and Positive Prediction Errors from Bayesian

Decoding Are Associated with Particular Locations, and Slow and

Fast Gamma Predominate at Different Locations on the Linear Track
Leftward runs were reversed (as described in Figure 3).

(A) Mean prediction errors ± 95% confidence intervals are plotted against

position on the track. Note that positive prediction errors were associated with

positions where rats were leaving the end of the track, and negative prediction

errors were associated with positions where rats were approaching the end of

the track.

(B) The ratio of the probability of slow gamma occurrence to the probability of

fast gamma occurrence (blue) and the ratio of the probability of fast gamma

occurrence to the probability of slow gamma occurrence (red) are plotted

against position on the track. Note that these results are a transformed version

of what is shown in the left panel of Figure S4B. See also Figure S6.
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Skaggs et al., 1996). It is unlikely that theta phase precession

simply reflects retrieval of upcoming locations because prospec-

tive coding was associated with slow gamma, and phase pre-

cession was less pronounced during periods of slow gamma.

Specifically, spikes were largely restricted to the late theta phase

component of theta phase precession. In other words, upcoming

locations were preferentially represented and spiking was sup-

pressed at early theta phases when slow gamma rhythms were

present (Figure 5B). Theta phase precession did occur, however,

during fast gamma periods (Figure 5C) when cells preferentially
678 Neuron 82, 670–681, May 7, 2014 ª2014 Elsevier Inc.
represented locations in the recent past. These findings support

the interpretation that spikes occurring on early theta phases

code recently visited locations (Dragoi and Buzsáki, 2006), not

current location as otherwise suggested (Lisman and Redish,

2009). Recent events are thought to be maintained in short-

term memory by persistent firing in entorhinal cortex (Jensen

and Lisman, 2005; Suzuki et al., 1997; Hasselmo and Stern,

2006), and fast gamma promotes inputs from entorhinal cortex

(Colgin et al., 2009). Fast gamma inputs fromMECmay also acti-

vate representations of current location slightly later in the theta

cycle. Representations of upcoming locations could then be trig-

gered as a result of associations that were formed across

sequentially activated place cells during prior learning. We pre-

dict that cells coding current location would not trigger firing of

cells coding upcoming locations in a novel environment, and

thus spikes on late theta phases would be absent during fast

gamma in a novel environment. The theta phases at which spikes

occurred were only weakly correlated with position during the

first lap on a linear track on a given day (Mehta et al., 2002).

Thus, it is possible that the relationship between theta phase

and position would be greatly diminished during periods of fast

gamma in a novel environment. In any case, this remains an

interesting question for later study.

Another interesting question is how slow and fast gamma

modes relate to different classes of gamma-modulated cells in

CA1 reported by Senior and colleagues (Senior et al., 2008). In

that study, ‘‘TroPyr’’ cells fired at the trough of gamma and fired

across the full range of theta phases during theta phase preces-

sion, whereas ‘‘RisPyr’’ cells fired at the rising phase of gamma

as the animal was leaving a cell’s place field. The study did not

differentiate between different frequencies of gamma. However,

TroPyr cells may correspond to fast gamma-modulated cells.

Place cells fired across the full range of theta phase precession

during fast gamma in the present study (Figure 5C), and

earlier work showed that cells that were significantly phase

locked to fast gamma tended to fire on the fast gamma trough

(Colgin et al., 2009). The relationship between RisPyr cells and

slow and fast gamma remains unclear, however. Place cells

that were significantly phase-locked to slow gamma did tend

to fire on the rising phase of slow gamma (Colgin et al., 2009).

However, place cells fired in the initial part of their place fields

during periods of slow gamma (Figure 5B), whereas RisPyr

cells tended to fire in the later portions of their place fields

(Senior et al., 2008).

Although it is possible that our results were influenced by fac-

tors unrelated tomemory (e.g., consumption of reward), the rela-

tionship of slow and fast gamma rhythms to prospective and

retrospective coding modes suggests that different frequencies

of gamma coordinate different types of spatial memory process-

ing. Fast gamma may correspond to an encoding mode, similar

to that proposed previously for theta-modulated gamma during

learning (Jensen and Lisman, 1996; Lisman and Otmakhova,

2001). In this mode, representations for recently visited locations

may be held in a short-term memory buffer that provides the re-

petitive firing necessary to encode new memories. On the other

hand, slow gammamay correspond to a retrieval mode, in which

firing is facilitated before the center of the place field and sup-

pressed in the later part of the place field. This may prevent
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ongoing encoding from interfering with retrieval of previously

stored spatial memories, as can occur if these processes are

engaged at the same time (Hasselmo et al., 2002). Considering

that slow and fast gamma rhythms occur in other brain regions

(Kay, 2003; van der Meer and Redish, 2009; Igarashi et al.,

2013; Manabe and Mori, 2013), separate slow and fast gamma

modes may mediate different types of information processing

throughout the brain.

EXPERIMENTAL PROCEDURES

Subjects

Five male Long-Evans rats weighing approximately 350–500 g were used in

the study. Animals were housed on a reverse light/dark cycle (lights off from

8 a.m. to 8 p.m.) and tested during the dark phase. After surgery, animals

were housed individually in cages (�40 cm 3 40 cm 3 40 cm) built from clear

acrylic and containing enrichment materials (e.g., plastic balls, cardboard

tubes, and wooden blocks). Rats were allowed to recover from surgery for

at least 1 week prior to the start of training. During the data collection period,

rats were placed on a food deprivation regimen that maintained them at�90%

of their free-feeding body weight. All experiments were conducted according

to the guidelines of the United States National Institutes of Health Guide for the

Care and Use of Laboratory Animals under a protocol approved by the Univer-

sity of Texas at Austin Institutional Animal Care and Use Committee.

Tetrode Placement

Over the course of a few weeks after drive implantation, tetrodes were slowly

lowered toward their target locations. We targeted 11–12 of the tetrodes (11 in

one rat, 12 in the other four rats) toward CA3 and CA1 cell body layers. Another

tetrode was targeted toward the apical dendritic layers of CA1 and was used

for hippocampal depth estimation as the rest of the tetrodes were turned

down. Another tetrode was used as a reference for differential recording.

This reference tetrode was placed at the level of the corpus callosum or higher

and was recorded against ground to make sure that it was placed in a quiet

location. All recording locations were verified histologically after experiments

were finished. Representative examples of final recording locations are shown

in Figure S7. Final hippocampal recording sites used in the study were located

in or near CA1 and CA3 strata pyramidale. In one rat, two tetrodes targeted to-

ward CA1 appeared in histological sections to be on the border of CA2-CA1.

However, place cells and LFPs recorded from these tetrodes were indistin-

guishable from other CA1 recordings collected simultaneously. Therefore,

place cells, interneurons, and LFPs from these tetrodes were included in this

study. The majority of CA3 tetrodes were located in CA3c (i.e., in the hilus,

see Figure S7 for an example). Because gamma oscillations exhibit large am-

plitudes in the hilus (Buzsáki et al., 1983; Bragin et al., 1995), volume-conduct-

ed gamma oscillations from the hilus contaminated LFP recordings from these

tetrodes. Thus, we did not include recordings from CA3 tetrodes in our main

analyses involving LFPs. Single-unit recordings from CA3 tetrodes were, how-

ever, included in Bayesian decoding analyses of activity during periods of slow

and fast gamma in CA1. In two rats, some of the tetrodes targeted toward CA3

ended up in the dentate gyrus (one tetrode in one of the rats and two tetrodes in

the other). Recordings from dentate gyrus tetrodes were not used in this study.

Classification of Individual Place Cell Coding Modes

We used 692 CA1 cells from five rats for classification of coding modes. If mul-

tiple days of the same cell were recorded, only data from the first acceptable

day were used for that cell. Animals’ movements along the linear track were

collapsed into one dimension for ease of analysis. Place field passes in which

the animal’s running speed dropped below 5 cm/s were discarded. The

average place field center was then defined as the center of mass of the posi-

tions of the remaining spikes. Prospective passes were defined as those in

which greater than or equal to two-thirds of spikes occurred before the place

field center. Retrospective passes were defined as those in which greater than

or equal to two-thirds of spikes occurred after the place field center. All remain-

ing passes through the place field were categorized as ambiguous. To deter-
mine the time difference between cell pairs exhibiting the same or different type

of coding (Figure 1C), we excluded ambiguous passes. The time point for each

coding event was defined as the timewhen the rat passed through the center of

the spiking activity for that particular traversal through the field. To determine

whether the place cell population exhibited coding modes more often than ex-

pected by chance, we determined the proportion of passes through the place

field that would randomly exhibit coding modes for each cell (Figure 1B). To do

this, we preserved the number of spikes for each place cell and preserved the

number of spikes that occurred on each pass through a place field, but

randomly shuffled the spikes’ assignments to particular passes.

Gamma Power during Prospective and Retrospective Coding

Prospective, retrospective, and ambiguous passes through a place field were

defined as described above for the population of CA1 cells. For each catego-

rized place field traversal, the period of time duringwhich the place cell emitted

spikes in the field defined the time windows that were used to estimate slow

and fast gamma power. Time-varying slow and fast gamma power estimates

were obtained for these time windows as described below.

Estimating Slow and Fast Gamma Power

For fast and slow gamma estimates (see Supplemental Experimental Proce-

dures), time-varying power was computed across the 60–100 Hz and 25–

55 Hz frequency bands, respectively. Although fast gamma has previously

been defined as extending up to 140 Hz (Colgin et al., 2009), we chose to

cut it off at 100 Hz to avoid overlap with the recently defined epsilon band

(90–150 Hz; Belluscio et al., 2012) and to avoid contamination by spike wave-

forms, which can generate power across a broad range of high frequencies,

sometimes extending down to �150 Hz (Colgin et al., 2009). A single estimate

of slow gamma power and a single estimate of fast gamma power were then

obtained for each categorized place field traversal by averaging power for

each gamma type across the time window and across the frequency band

of interest (i.e., 60–100 Hz for fast gamma and 25–55 Hz for slow gamma).

Matching Prospective and Retrospective Coding Events According

to Running Speed

Counts of retrospective and prospective events were binned by average

running speed using intervals of 5 cm/s. The number of events was randomly

downsampled so that the numbers of retrospective and prospective events

within each speed bin were equal. Measurements of slow and fast gamma

were then obtained for the remaining events, as described above.

Detection of Gamma Episodes

To extract periods of slow and fast gamma activity in the LFP recordings, we

calculated time-varying slow and fast gamma power using the method

described above. Power at each time point was averaged across the slow

and fast gamma frequency ranges to obtain an estimate of slow and fast

gamma power for each time point. Time points were collected during which

slow and fast gamma power exceeded 2 SD above the mean power of slow

and fast gamma, respectively, across all time points. This method of slow

and fast gamma detection has been used previously (Colgin et al., 2009).

Time windows, 125 ms in length, were cut around the selected time points.

In each 125 ms segment, the slow and fast gamma amplitude maxima were

determined from the slow and fast gamma band-pass filtered versions of the

recordings. Duplicated gammawindows, a consequence of detecting overlap-

ping timewindows, were avoided by discarding identical maxima valueswithin

a given gamma subtype and further requiring that maxima of a given gamma

subtype be separated by at least 100 ms. The maxima were then used to

define the centers of slow and fast gamma episodes. Slow and fast gamma

episodes/periods were defined as 125-ms-long windows centered around

the slow and fast gamma maxima.

Theta Phase Precession

Theta phase was determined by band-pass filtering the LFP signal in the theta

range (6–10 Hz) and performing aHilbert transform. Each spike was assigned a

theta phase using the signal from the tetrode from which it was recorded.

Spike locations were normalized using the boundaries of the place field

(ranging from 0 to 1). Leftward runs were reversed such that movement always
Neuron 82, 670–681, May 7, 2014 ª2014 Elsevier Inc. 679
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occurred from 0 to 1. Gamma episodes were detected as described above,

and spikes occurring within slow and fast gamma episodes were used to

construct the position-phase plots shown in Figures 5B and 5C.

Detecting Individual Theta Cycles for Bayesian Decoding

The LFP signal was chosen from the tetrode with the most recorded CA1 cells

for that particular recording. The signal was separately band-pass filtered for

theta (6–12Hz) anddelta (2–4Hz), and thepower for eachwasdeterminedusing

a convolving Morlet wavelet (as described in Supplemental Experimental Pro-

cedures). The presence of theta activity was defined when theta power was

greater thandelta by three timesormore. Themaximaof theband-pass-filtered

signal were then identified as theta peaks for each recording. Individual theta

cycles were cut from peak to peak, as in Gupta et al. (2012), and spikes occur-

ring within those theta cycles were used to reconstruct position estimates for

each theta cycle using a Bayesian decoding approach, described below.

Bayesian Decoding Analyses

Themost likely position representedby spiking activity fromapopulation of 456

CA1cells and87CA3cellswasestimated using aBayesiandecoding approach

(Zhang et al., 1998; Brown et al., 1998; Jensen and Lisman, 2000). Recording

sessions with fewer than 20 cells were not used, and cells were not excluded

from Bayesian analyses on the basis of the place field acceptance criteria

(see Supplemental Experimental Procedures). These factors explain why the

number of CA1 cells listed here differs from the number used for the single-

unit analyses. Only theta cycles containing at least two active place cells

were included in the analysis. Additionally, theta epochs were selected using

the theta/delta threshold method described above; spikes that occurred

during nontheta epochs were not included. Place fields for each of the cells

were constructed fromeach recording session on the linear track, as described

in the ‘‘Place fields’’ section inSupplemental Experimental Procedures.Decod-

ing was performed for each theta cycle using a 40 ms sliding time window

shifted by 10 ms at each step, as in Gupta et al. (2012). The probability of the

animal to be at position x, given the number of spikes n from each cell collected

in the time window t was estimated using Bayes rule:

PðxjnÞ=PðnjxÞPðxÞ
PðnÞ :

P(x) was calculated from the experimental tracking data. P(njx) was esti-

mated using the firing rates from the experimentally obtained place fields in

the same 10 min linear track session, assuming that the firing rates of different

place cells are statistically independent and that the number of spikes from

each cell has a Poisson distribution (Zhang et al., 1998; Jensen and Lisman,

2000). P(n), the normalizing constant, was set so that P(xjn) summed to 1. Re-

constructed positions were identified for each time bin as the center of mass of

the probability distribution, P(xjn).
The reconstructed location at each time bin was then compared with the

actual location identified from position tracking data. A prediction error was

calculated for each time bin by subtracting the actual position from the recon-

structed position. Errors were then averaged across all time bins within a theta

cycle to obtain a single prediction error estimate for each theta cycle.

Slow and fast gamma power estimates were calculated for each theta cycle

in the following manner. For every tetrode with cells that were used for

Bayesian decoding, slow and fast gamma power were estimated within the

theta cycle using the method described above. Slow and fast gamma power

estimates were then averaged across tetrodes, and averaged across time

within the theta cycle, to obtain a single slow gamma power estimate and a sin-

gle fast gamma power estimate for each theta cycle. Theta cycles associated

with slow or fast gamma (Figure 6) were then detected by identifying theta cy-

cles with slow and fast gamma power estimates that were 2 SD greater than

the mean slow and fast gamma power, respectively, across all theta cycles.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and seven figures and can be found with this article online at http://dx.doi.

org/10.1016/j.neuron.2014.03.013.
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